

Air Superiority at Red Flag

Mass, Technology, and Winning the Next War

Joseph W. Locke Lieutenant Colonel, USAF

Air University

Allen G. Peck, Lt Gen, Commander

Air Force Research Institute

John A. Shaud, Gen, PhD, USAF, Retired, Director

School of Advanced Air and Space Studies

Gerald S. Gorman, Col, PhD, Commandant James M. Tucci, PhD, Thesis Advisor

AIR UNIVERSITY AIR FORCE RESEARCH INSTITUTE

Air Superiority at Red Flag

Mass, Technology, and Winning the Next War

JOSEPH W. LOCKE Lieutenant Colonel, USAF

Drew Paper No. 9

Air University Press Maxwell Air Force Base, Alabama 36112-5962

Muir S. Fairchild Research Information Center Cataloging Data

Locke, Joseph W.

Air superiority at Red Flag : mass, technology, and winning the next war / Joseph W. Locke.

p.; cm. – (Drew paper, 1941-3785; no. 9) Includes bibliographical references. ISBN 978-1-58566-201-2.

1. Air power—United States. 2. Air warfare—Mathematical models. 3. Fighter pilots—Training of—United States—Statistics. 4. Eagle (Jet fighter plane). I. Title. II. Series.

358.4340973-dc22

Disclaimer

Opinions, conclusions, and recommendations expressed or implied within are solely those of the author and do not necessarily represent the views of Air University, the United States Air Force, the Department of Defense, or any other US government agency. Cleared for public release: distribution unlimited.

This Drew Paper and others in the series are available electronically at the Air University Research Web site http://research.maxwell.af.mil and the AU Press Web site http://aupress.au.af.mil.

The Drew Papers

The Drew Papers are occasional publications sponsored by the Air Force Research Institute (AFRI), Maxwell AFB, Alabama. AFRI publishes this series of papers to commemorate the distinguished career of Col Dennis "Denny" Drew, USAF, retired. In 30 years at Air University, Colonel Drew served on the Air Command and Staff College faculty, directed the Airpower Research Institute, and served as dean, associate dean, and professor of military strategy at the School of Advanced Air and Space Studies, Maxwell AFB. Colonel Drew is one of the Air Force's most extensively published authors and an international speaker in high demand. He has lectured to over 100,000 students at Air University as well as to foreign military audiences. In 1985 he received the Muir S. Fairchild Award for outstanding contributions to Air University. In 2003 Queen Beatrix of the Netherlands made him a Knight in the Order of Orange-Nassau for his contributions to education in the Royal Netherlands Air Force.

The Drew Papers are dedicated to promoting the understanding of air and space power theory and application. These studies are published by the Air University Press and broadly distributed throughout the US Air Force, the Department of Defense, and other governmental organizations, as well as to leading scholars, selected institutions of higher learning, public-policy institutes, and the media.

All military members and civilian employees assigned to Air University are invited to contribute unclassified manuscripts that deal with air and/or space power history, theory, doctrine, or strategy, or with joint or combined service matters bearing on the application of air and/or space power.

Authors should submit three copies of a double-spaced, typed manuscript and an electronic version of the manuscript on removable media along with a brief (200-word maximum) abstract. The electronic file should be compatible with Microsoft Windows and Microsoft Word—Air University Press uses Word as its standard word-processing program.

Please send inquiries or comments to Director Air Force Research Institute 155 N. Twining St. Maxwell AFB, AL 36112-6026 Tel: (334) 953-9587

DSN 493-9587 Fax: (334) 953-6739 DSN 493-6739

E-mail: research.support@maxwell.af.mil

Contents

Chapter		Page
	DISCLAIMER	ii
	FOREWORD	vii
	ABOUT THE AUTHOR	ix
	ACKNOWLEDGMENTS	хi
	INTRODUCTION	xiii
1	REVIEW OF LITERATURE	1 11
2	METHODOLOGY: RED FLAG	13 38
3	RESULTS	41 59
4	STRATEGIC IMPLICATIONS	61 65
5	CONCLUSION	67
	APPENDICES	71
	BIBLIOGRAPHY	207
Figure	Illustrations	
1	Nevada test and training range (NTTR) size	
0	comparison	14
2	NTTR airspace functionality	15
3	Daily attrition variation	24
4	Yearly attrition variation	25
5	2001 attrition variation	26
6	Yearly average sortie variation	27
7	Yearly force ratios	27
8	Attrition variation versus threat aircraft	30

CONTENTS

Figure		Page
9	Threat weapon and aircraft comparison	31
10	Final data breakdown	32
11	MiG-23/29 short scatter plot	33
12	MiG-23/29 short attrition box plot	34
13	MiG-23/29 short force ratio histogram	35
14	MiG-23/29 short regression results	36
15	SU-27 long regression lines	37
16	MiG-23/29 short attrition lines log scale	43
17	Force ratio histogram	43
18	MiG-23/29 short kill ratio	46
19	MiG-23/29 surviving Red Aircraft versus F-15C sweep	48
20	MiG-23/29 short A-A missile 100 versus 100 kill ratio	50
21	MiG-23/29 short A-A missile 100 versus 100 leakers	51
22	MiG-23/29 short A-A missile 100 versus 300 kill ratio	52
23	MiG-23/29 short A-A missile 100 versus 300 leakers	53
24	MiG-23/29 short A-A missile 100 versus 700 kill ratio	53
25	MiG-23/29 short A-A missile 100 versus 700 leakers	54
26	SU-27 long missile attrition lines log scale	56
27	SU-27 long kill ratio	56
28	Combined attrition and kill ratio	57
Table		
1	MiG-23/29 campaign plan analysis data	49
2	SU-27 long campaign plan analysis data	58

Foreword

Soviet premier Joseph Stalin once famously noted, "Quantity has a quality all its own." Certainly the Allied victory in the Second World War, in which Stalin's war machine played a vital role, depended on the tremendous output from Allied armaments factories that swamped Nazi Germany and imperial Japan. Yet studies of air warfare have always emphasized the important role of technological quality, as opposed to simple mass. Certainly Stalin's much larger air force was overwhelmed in June 1941 by the technologically superior and better-trained Luftwaffe. North Atlantic Treaty Organization planners in the 1970s and the 1980s likewise sought to check Warsaw Pact numerical superiority by fielding smaller numbers of superior aircraft.

Yet planners would be unwise to neglect the importance of "mass" even in today's high-tech air superiority environment. Lt Col Joseph W. Locke's study offers a model for understanding the relationship between technology, mass, and attrition in aerial warfare that is useful for shaping operational and strategic force decision making. The F-15C's offensive counterair (OCA) sweep mission within the capstone United States Air Force exercise Red Flag highlights one potentially useful relationship that has value as a model for air superiority. A rigorous comparison of data from 299 Red Flag missions suggests a change in attrition rates that correlates with force ratios. The most significant implication of this study, however, is the predicted variance in changing kill ratio as the force ratio changes. The wide middle area of stability, identified as numerical attrition, is consistent with the traditional notion that kill ratio is largely a function of training and technology. It is also consistent with most of the historical record, including the early campaigns of World War II, that suggested that nominal changes in the relative mass of forces brought about little change in the kill ratio. This is also the reason evolving technology often produced the only observable change in the kill ratio. The rapid change in attrition rate at either end of the model also has great explanatory value. By indicating regions where disproportionate force dictates a similarly lopsided victory, the concept accounts for several notable historical cases, such as Operations Desert Storm (1991) and Allied Force (1999). With continuous development and the incorporation of additional data, these diagrams can aid operational planners in developing more effective air superiority campaigns in future conflicts.

"Air Superiority at Red Flag" was originally written as a master's thesis for Air University's School of Advanced Air and Space Studies (SAASS) at Maxwell AFB, Alabama. The thesis was directed by Lt Col John Terino, a member of the SAASS faculty. Lieutenant Colonel Locke's thesis is thoroughly researched, analytically rigorous, and forcefully written. It was the recipient of the 2008 "SAASS Thesis Award in Technology, Space, and Cyberspace," sponsored by the Air University Foundation. SAASS is pleased to partner with the Air Force Research Institute and Air University Press to publish it as a Drew Paper, thereby making it available to a wider audience.

RICHARD R. MULLER

Professor of Military History and Associate Dean USAF School of Advanced Air and Space Studies

About the Author

Lt Col Joseph W. Locke graduated from the United States Air Force Academy in 1995. After completing undergraduate pilot training in 1997, he proceeded to fly F-16CJs at Mountain Home Air Force Base (AFB), Idaho. Subsequently, Colonel Locke served as an air liaison officer and joint terminal air controller from 2001 to 2003 and supported several units, including the 10th Mountain Division, Operations Detachment Alpha 365 and 1st Battalion 5th Special Forces Group in both Operations Enduring Freedom and Iraqi Freedom. He returned to the F-16CJ in 2003 and served as an instructor pilot, flight commander, and assistant director of operations at Spangdahlem Air Base, Germany. He is a senior pilot with 1,500 hours of flying. Colonel Locke graduated from the Air Command and Staff College and SAASS.

Colonel Locke, a native of Cedaredge, Colorado, is married to the former Erin M. O'Connell of Evanston, Wyoming. They have three children: Caron, Jessica, and Garrett.

Acknowledgments

I would like to thank Col Gerald S. Gorman and the rest of the SAASS faculty for their dedication to the mission. I would also like to thank the administrative staff, including Sheila McKitt and Kelly Rhodes, who supported each student well beyond the requirements of their job descriptions.

This thesis would not have been possible without the outstanding support of the Red Flag team at Nellis AFB, Nevada. Thanks go to Col David Stilwell, commander of the 57th Adversary Tactics Group. Col Greg Neubeck, commander of the 414th Combat Training Squadron, allowed me the freedom to follow a hunch. Additionally, Everett Clason and the entire Arcata crew were not only instrumental in collecting the data but also provided valuable insight into Red Flag historical trends.

The other major hurdle in this thesis was my own rudimentary understanding of computers and statistics. Capt Travis Herbranson personally saved me many hours of work by assembling the final database and checking it for accuracy. In addition, Dr. Melanie Teichert and Dr. Gary Schaub helped me through the doldrums of statistics to find patterns in the chaos.

I cannot say enough about the love and support I received from my wife and other family members. Their enthusiasm and understanding made the past year a pleasure instead of a year of pain.

Introduction

Through nearly 2,500 years of recorded warfare, the strategic debate over the primacy of quantity versus quality remains undecided. Esoteric examples of highly trained and motivated soldiers defeating massive, yet impotent, hordes clutter history. Hannibal's exploits at Cannae, Napoléon's victory at Austerlitz, and Nelson's victory at Trafalgar are only a few examples of great captains overcoming the odds and defeating numerically superior forces with skill and guile. Military historians often cite these victories and analyze them for insight and inspiration. With so many examples for inspiration, however, it is easy to forget that, in many cases, mass wins. Many skilled commanders have fallen to the weight of superior numbers despite heroic efforts and battlefield genius. Therefore, the essential issue for commanders is not about quality or quantity. Instead, commanders must focus on how these two factors interact and what combination provides the best chance for victory.

Clausewitz understood this interaction and combined these complementary factors into a unifying concept of strength. Strength combines raw numbers with a host of other factors—including training, tactics, skill, weapons, initiative, and commander's genius—that routinely affect the fighting strength of the opposing armies and their soldiers.¹ Qualitative differences involving these factors can create advantages that offset numerical shortcomings, especially when applied at decisive points. At the strategic and operational levels of war, the challenge is to determine the strength required for a desired effect. Attacking with insufficient strength ensures the loss of offensive power at the expense of achieving the desired objective. Conversely, using excessive strength squanders effort better used to exploit opportunities concurrent with the main attack or useful in influencing the attainment of other objectives.

Operations Desert Storm and Allied Force and the opening gambit of Operation Iraqi Freedom are routinely invoked as contemporary benchmarks of American conventional military accomplishment. Although the skill required to execute each of the previously mentioned campaigns was noteworthy, the United States' disproportionate strength heavily favored American military victory. In each case, the strategic environment held the

enemy completely at risk, while at the same time ensuring American and allied forces were immune from attack. Col John Warden describes this situation as Case II-offensive operations.² He fittingly describes this situation as a "commander's dream . . . [that] provides the opportunity for decisive action action so decisive the war can theoretically be won from the air."3 As a result, his famed five-ring model was well suited for the situation where United States (US) Air Force stealth platforms and precision munitions could combine to attrite enemy capability without a direct ground confrontation. Regrettably, visions of brief, pristine conflicts with only minuscule losses have transformed recent strategic opinion toward a belief that such victories were not only possible but also probable. According to some, high-technology war made victory such a foregone conclusion that visionaries were primarily concerned with refining the elegance of the final product. Obviously, the recent lessons from Iraq and Afghanistan highlight the fallacy that tactical capability ordains strategic victory. As America focuses toward winning the war against terror, the temptation is for the United States to rest on its laurels in the conventional arena.

Frederick Kagan highlights the pitfalls of believing "future adversaries will simply cede the realm of conventional war to the US."4 He suggests America's aerial hegemony is a temporary phenomenon that will last only until other nations find methods of incorporating or countering its technology. America's enemies will adapt for their own survival and attempt to alter the balance of power in their favor. The first step in the process, developing counter tactics, is easily identifiable in the conflicts since Desert Storm. Serbian surface-to-air missiles (SAM) operators successfully shot down a stealthy F-117 using an outdated SA-3, ingenuity, and patience.⁵ Insurgent groups in Iraq and Afghanistan are dispersing and blending into the terrain to negate the advantage of American high-technology reconnaissance and precision-strike capabilities. Other nations are actively taking the steps necessary to counter American technology directly by developing their own innovative, high-technology systems to hold American aerial hegemony at risk.

In the future, when American forces act outside of Warden's Case II scenario, immaculate victory becomes less likely, and the stakes increase dramatically, yet victory remains the only option.

In that case, the depth of America's military strength becomes more influential than its esoteric application. This realization does not negate the great strides evident in such new planning methods as effects-based operations or systemic operational design. Understanding the enemy, the enemy's centers of gravity, and potential weaknesses are always critical elements in any viable plan no matter the scenario. The main difference is in execution. Where enemy offensive strength is considerable, American offensive potential diminishes due to increases in defensive requirements. Conversely, when enemy defensive strength is significant enough to prevent—at least temporarily—strategic attacks on their centers of gravity; tactical military force-on-force confrontation is the only remaining option.

Before the next major war begins, strategic decisions about military force structure will shape the feasibility of operational plans and preordain the costs in both dollars and lives required for victory. The increasing expense of next generation aerial weapons means that current and future inventories are shrinking at an alarming rate. Current trends suggest that 20 B-2s and fewer than 200 F-22s will face the responsibility of defending America's shores and projecting power worldwide. Future systems, like the joint strike fighter, will similarly supplant current aircraft with increased capabilities and reduced numbers. These shrinking inventories of high-technology aircraft will likely result in a future conflict where America will fight outnumbered and be completely reliant on technology to maintain a preponderance of Clausewitzian strength. Therefore, efficiency is essential to maintain freedom of action.

Efficiency is only attainable through understanding. By exploring the relationship between mass and technology in the broader context of aerial combat, commanders can increase the quality of their operational and strategic decisions before placing forces in harm's way. How much mass is needed to accomplish the objective? Will more aircraft increase the chances of success? If more aircraft will help, how much of an advantage will accrue? What are the potential effects of a new technology on the battlefield? Bounding these operational questions are strategic decisions about numbers and types of aircraft made years or even decades before a confrontation erupts.

Finding a method for understanding these relationships is essential for enhancing the decision process.

Purpose and Objectives

This study proposes a model for understanding the relationship between technology, mass, and attrition in aerial warfare that is useful for shaping operational and strategic-force decision processes. Red Flag serves as the data set used to highlight and explain one potentially useful relationship. This daunting task, if taken as a whole, could lead to an unusable mess confused by the limits of training and result in sweeping generalities irrelevant to strategic and operational users. Additionally, like most exploratory studies attempting to use observed data from events designed for another purpose, this complex scenario contains numerous unaccounted for variables that hamper pristine scientific correlation.⁷ Instead, by focusing the analysis on a narrow piece of the larger whole, relationships become less ambiguous, trends become clearer, and correlation more direct. The ideal subject for analysis includes as few training limitations as possible, maintains the greatest possible interaction with the adversary forces, shows a consistent level of participation and performance over time, and represents one of the emphasized mission areas exercised during Red Flag. Therefore, the air-to-air mission area, and specifically the F-15C and the offensive counterair-sweep mission, provides an ideal center of attention.8

Air superiority is the "pivotal prerequisite for success" that enables every other airpower function from strategic attack to airlift. As such, it is a critical capability with grave strategic implications for failure. Once air superiority is established, the US Air Force can directly focus on attacking the enemy's ability and will to fight. Without it, however, every mission becomes a fight for the air itself and results in little pressure applied to the enemy. While air superiority in and of itself does not guarantee victory, it helps to ensure a joint force commander's freedom of maneuver and initiative within his operational area. This lesson, reinforced in every major operation since World War I, requires constant focus and is easy to take for granted.

Chapter 1 highlights the quest for a more complete understanding about the character of aerial combat and explains the limitations of the major approaches applied in this quest. Chapter 2 examines Red Flag and statistically explores the Red Flag data to create an attrition model relating mass and technology. This section helps those uninitiated with the Red Flag exercise and those interested in the underlying explanation of the final relationships. Readers familiar with Red Flag or uninterested in the statistical data analysis can skip to chapter 3 to enter directly into the exploration of the results of the analysis and its implications.

Chapter 3 develops and recommends a method of attrition modeling designed to help commanders make informed decisions about air strategy at the operational level of war. It attempts to account for the character of modern aerial combat, is flexible enough to adjust to the realities of different scenarios, and is simple enough for timely results to shape campaign plans. Chapter 4 analyzes the strategic implications of the data and makes recommendations for additional research.

Notes

(Notes for this chapter and the following chapters appear in shortened form. For full details, see appropriate entries in the bibliography.)

- 1. Clausewitz, On War, 194-97.
- 2. Warden, *Air Campaign*, 17. Warden identifies five specific cases of air superiority characterized by the vulnerability of blue and red airfield/rear areas and the accessibility of the battle-lines to aircraft. Case I (the Chess Game) holds both sides vulnerable across all three variables. Case II (Offense) threatens red and holds blue immune to attack. Case III (Defense) is the opposite of Case II. Case IV (Limited Options) occurs when both sides are immune from attack on their resources but can fight over the battle area. Finally, Case V is a scenario where neither the battlefield nor the adversary homelands are vulnerable to aircraft.
 - 3. Ibid., 33.
 - 4. Kagan, Finding the Target, 390.
 - 5. Lambeth, NATO's Air War for Kosovo, 117-18.
- 6. Air Force Doctrine Document (AFDD) 2.0, *Operations and Organization*, 13–20, 85–97; and Schmitt, "Systemic Operational Design," unpublished paper.
 - 7. Kutner, Nachtsheim, and Neter, Applied Linear Regression Models, 345-46.
 - 8. AFDD 2-1.1, Counterair Operations, 17.
 - 9. AFDD 1, Air Force Basic Doctrine, 41.

Chapter 1

Review of Literature

The object of science is knowledge; the object of art is creative ability.

—Carl von Clausewitz
On War

Like war as a whole, airpower theory has evolved with an acknowledgment that strategy is both an art and a science. Controversy between these two diametric terms stems from the faulty belief that success lies in emphasizing one over the other. The variable character of warfare and the unique temperament of individual battles ensure the irrelevance of either a checklist methodology or blind trust in a previously successful commander. War is fickle if for no other reason than because it is a clash of wills between learning and evolving opponents. Effective strategy then must balance both the knowledge of what is probable with the *coup d'oeil* to realize what is possible. Unfortunately, extrapolating tactical science to help shape operational and strategic art is difficult.

Such land warfare maxims as successful attacks needing a three-to-one advantage provide commanders with a baseline for gauging the strengths of their plan. The rule, however, remains open for interpretation within the specific context of the situation. Environmental factors like terrain and vegetation present unique challenges and opportunities that focus on a commander's perception of the possible.² Similarly, the human element is an overriding force in land warfare that greatly influences a commander's options.³ The machines used to augment human power often magnify the effects of the human will. Mechanized troops that are out of fuel can regress to a role as infantry to continue the fight. Admittedly, their effectiveness will decrease, but as long as their will remains, resistance will continue.

Unlike ground combat, however, aerial warfare exists in a different environment and follows a different set of rules. The aerial environment is largely uniform and unpredictable. When Airmen confront each other in the sky, few geographic benefits

provide an initial edge. There is no terrain to supply an advantage or vegetation to offer concealment. Weather can obviously play a role, but its effects are often equally restrictive for both sides. The sun may offer a fleeting advantage in the visual engagement, but only for an instant. Admittedly, geography exerts an influence on basing and determines flight routes and proximity to the battle. However, global reach technology makes virtually any location accessible with the right equipment. As a result, the balance of technology between the opposing forces defines the realm of the possible in aerial warfare. Lt Col William Sherman eloquently explains this relationship in his 1926 book, Air Warfare, by suggesting, "The man in the air is peculiarly at the mercy of material things. No matter how great his determination nor how high his courage, he is helpless against an enemy with a machine that can out-run, out-climb, and out-maneuver him."4 Additionally, an aircraft out of fuel or weapons must either retreat to safety or perish. The Airman in combat is completely reliant on his machine for relevance on the battlefield. Technology, like terrain, however, can only go so far in determining the outcome of conflict. Pilot training, tactics, numbers of aircraft, and chance all play into the relationship to determine the outcome. This is true historically and will continue to be true into the near future.

The Combined Bomber Offensive

One germane historical example is the combined bomber offensive of World War II, since it provides an excellent case to highlight the aforementioned interaction of factors. Changes in relative levels of technology and mass between the Allied and Axis powers resulted in vastly different outcomes in the skies over Germany. Largely understood as a war of attrition, the air war's character and levels of losses evolved greatly between when the US Army Air Forces (AAF) entered the war in 1942 and final victory in 1945. Early air-to-air combat against the Germans in 1942 resulted in an even kill ratio of approximately 1:1. Given the high level of German experience in the air-to-air arena compared to the green American pilots, it is fortunate that results were not worse. Additionally, with the stress on unescorted bombing in 1942, the AAF put little emphasis on

the air superiority role. By 1943, however, the need for fighter escort was obvious, and fighter sortie counts began to rise. For the first several months, force ratios between the fighters remained about even, but by early 1944, the Allies had nearly a three-to-one advantage in fighters over the intercepting German aircraft.⁶ Initially, this had little effect on the kill ratio. Between 6 April and 5 June 1944, the Allies flew nearly three times as many air-to-air sorties as the Germans but accounted for a kill ratio of only 1.2:1.⁷ The following three-month period, however, saw a twofold increase in Allied forces that significantly altered the balance of power. Between 6 June and 5 September 1944, Allied fighter sorties outpaced the German missions sixfold, and the fighter kill ratio jumped to 6.8:1.⁸

Pilot training and new technology explain some of this dramatic jump in kill ratio. A lack of German emphasis on producing pilots early in the war resulted in a dramatic decrease in their pilot's experience and training levels by 1944.9 A United States Strategic Bombing Survey (USSBS) document, however, contradicts this interpretation. While it acknowledges that overall bomber losses were declining, it concludes that the number of "bombers lost to E/A [enemy aircraft] per 100 combats with E/A" increased from 5.0 in late 1943 to a high of 17.7 in the second quarter of 1944.10 While increases in the effectiveness of German armament account for some of this increase, it would not be possible without a high degree of pilot skill.11 Similarly, many sources credit the introduction of the P-51 Mustang in late 1943 with tipping the technological advantage toward the Allies. 12 The Mustang, however, provided 24 percent of the Allied fighter sorties between 6 April and 5 June 1944 and 30 percent between 6 June and 5 September 1944. Again, this small change can account for some of the difference in the kill ratio, but it cannot explain the dramatic change in kill ratio from about even to an advantage of 6.8:1 in only three months. Morale could also have played a part, but the German war machine continued to function for more than a year after the Normandy invasion. Instead, the dramatic increase in the mass of the Allied air offensive seems to correlate most closely with the increase in the kill ratio. Noting this trend, Edward Luttwak concludes that Germany's "qualitative military superiority had become insufficient to offset numerical inferiority."13

Air Force Doctrine Document (AFDD) 1, *Air Force Basic Doctrine*, states, "The purpose of mass is to concentrate the effect of combat power at the most advantageous place and time to achieve decisive results . . . through effectiveness of attack, not just overwhelming numbers." Given airpower's inherent speed, range, and flexibility, this concept is potentially more valid today than ever before. Whether measuring numbers of aircraft or the number of targets each aircraft can attack, however, both are merely tactical measures, which require expansion. Endurance, sortie generation, and industrial potential are all important measures of mass at the operational and strategic level.

Unlike land warfare, where combat assets—man or material—can remain within the confines of battle from the start of an operation to the decision, combat aircraft effectiveness is fundamentally limited by time. Fuel becomes a significant problem during an engagement as fuel consumption rates increase. Aircraft unable to remove themselves from the fight before running out of fuel become unnecessary casualties aiding the enemy's cause. Likewise, opportunities to press an advantage may slip away if fuel restricts pursuit. Similarly, weapons capacity and use rates have virtually the same effect. An aircraft out of munitions becomes a liability rather than an asset in combat. Aerial refueling goes a long way to solving part of the problem by allowing aircraft to extend their range from home base, but fuel consumption remains an issue for deciding the duration combat aircraft can remain engaged. Weapons consumption, however, is only resolved by returning to base. As a result, harmonizing the time an aircraft needs to remain in combat with the rate it expends fuel and munitions is a delicate balance. Expect too much and the operational plan begins to break apart with gaps in capability. Expect too little and the sorties are wasted through inefficiency.

Closely nested with the on-station time requirement, sortie-generation capability is essential to keeping aircraft actively in the fight. Two of the most important measures of this capability are utilization (UTE) rates and average sortie duration (ASD). The UTE rate measures the average number of sorties an individual aircraft is required to fly in a specific period to accomplish the tasking. ¹⁵ ASD simply averages the amount of time individual sorties remain airborne. ¹⁶ Increasing either measure

puts added strain on the aircraft and maintenance. Ground turn times also can affect the overall measure of mass, because the longer aircraft are unavailable between sorties results in decreasing UTE rates. Up to a point, generating more sorties will increase the efficiency of the operation and ensure maximum pressure on the enemy. Past that point, however, efficiency rapidly decreases as aircraft begin to break faster than ground crews can make repairs. Therefore, a balanced operational plan must account for these realities and attempt to use aircraft at, but not exceeding, their maximum efficiency.

The last measure of mass is usually unaccounted for until it is too late. Manufacturing aircraft is a long process that requires specialized facilities and specially trained workers. Therefore, underestimating the number of aircraft required can have catastrophic consequences. Again, the German experience in World War II proves instructive. As German lessons from the Spanish Civil War indicated, "The problem of air superiority was not primarily one of numerical strength but of the quality of the personnel and weapons in the [air] arm."17 After spectacular victories in Poland and France in 1939-40, the German government did not increase aircraft production to prepare for the larger battles ahead. 18 Instead, "the Germans were sure that their technological expertise and military competence could master any threat."19 By the time the Luftwaffe realized the error, it was too late to increase aircraft production enough to stem the tide of Allied numerical superiority.²⁰

By contrast, Pres. Franklin D. Roosevelt set the goal of producing 10,000 combat aircraft a year in November 1938 and increased the goal to 50,000 a year in May 1940.²¹ Despite the foresight, American industry was unable to make the transition rapidly. Production rates reached the 10,000 aircraft a year mark in early 1942 and did not exceed 50,000 a year until 1943.²² Given the significantly longer lead times to produce modern high-technology military aircraft, the timeline to increase the size of today's Air Force would likely be significantly longer.²³ Today's trend toward shrinking aircraft inventories and long production lines accentuates this dilemma. Unlike the preparation for World War II, modern combat aircraft have virtually nothing in common with automotive or even civilian aircraft production. No longer can automobile factories and

their workers simply transition from building Fords to building F-22s. Instead, special facilities and specialized workers with the skills to work titanium, carbon fiber, and a myriad of other specialized materials would have to be grown.

Combining that production ramp-up timeline with the lethality of current systems means the US Air Force will likely have to fight and win the next war with the equipment it has on hand. Therefore, understanding the combat repercussions of peacetime force structure is essential to determining future American wartime success. With the increased lethality of forces, however, the time to wait and see what happens may be minimal. Generals will face a rapid succession of events where choices about when and where to mass forces can rapidly escalate towards inevitable victory or defeat before new aircraft production becomes a reality. Underestimating the number of aircraft required to gain and maintain air superiority against a well-equipped enemy may prove unrecoverable in an unexpected war. Overestimating, however, is no longer fiscally feasible.

Therefore, attempting to understand the relationship between mass and technology is essential for intelligent force structure decisions. Similarly, understanding the relationship could prove helpful for building successful operational plans. Finding a method to extrapolate tactical relationships into a useful form for shaping operational and strategic plans, however, has proven elusive. The past century witnessed several different methods for estimating the effort and time required to establish air superiority. Ranging from simple historical extrapolation to complex computer models, these techniques attempt to inform a commander's decisions with varying degrees of success.

Mathematical Modeling

F. W. Lanchester published one of the first models for aerial warfare in his 1916 book, *Aircraft in Warfare*. One of the earliest attempts to write a coherent airpower theory, he envisioned the full range of missions from reconnaissance to strategic attack and argued for the necessity of an independent air arm to maintain air superiority over enemy forces.²⁴ Despite his significant contributions and balanced analysis of early airpower, Lanchester's standing among aviators faded in comparison to

less mathematically inclined theorists such as Giulio Douhet and William "Billy" Mitchell in the 1920s. Despite his obscurity to the line Airman, he had a deep and persistent influence in the emerging field of operations research.

Intertwined within Lanchester's analysis of airpower was a deterministic mathematical relationship for analyzing military forces. Deterministic methods use equations to describe a relationship between relevant, quantifiable variables. As a result, they provide predictable and repeatable answers to known questions. They are extremely useful in the regime of pure science where an input directly correlates to a known effect. Unfortunately, if the analysis is biased or skewed in sections of the relationship, erroneous results can lead to poor decisions.²⁵ Lanchester's most prominent and controversial equation is the N-squared law that uses differential equations to derive a simple mathematical relationship to assess the strength of technologically driven military forces on the battlefield. His N-squared law suggests that "the fighting strengths of a force may be broadly defined as proportional to the square of its numerical strength multiplied by the fighting values of its individual units."26 The derivation of the equation is unimportant in this analysis except to explain that Lanchester's measure of military strength equals the force's quality (M) times the square of its mass (b) as expressed by the equation:

$Strength = Mb^2$

Assuming an accurate quality factor (M) for each side, the model provides a deterministic method of estimating the winning side and the timeline for the decision based on the interaction of quality and raw numbers.²⁷ J. F. C. Fuller even used the N-squared law as part of the rationalization to emphasize battlefield technology over mass.²⁸ Unfortunately, the appealing simplicity masks the complexity and variability of actual combat. By ignoring factors like morale, combined arms, and movement, Lanchester's equation requires significant modification to produce acceptable levels of accuracy.²⁹ Additionally, even with modification, the factors need specific "tuning of the equations" for the results to match historical examples.³⁰ As a result, Kenneth Watman, currently the deputy chief of staff for strategic plans and programs at Headquarters Air Force, con-

cludes, "It cannot be said that the Lanchester equations have ever constituted a generalizable model of warfare." ³¹

Recognizing the deficiencies of Lanchester, Col Trevor N. Dupuy, US Army, attempted to predict future battlefield results through a rigorous quantitative analysis of military engagements throughout history. Approaching the problem from an entirely different direction, his quantified judgment method of analysis (QJMA) used 73 discrete variables, including mass, technology, the environment, surprise, morale, and other intangible factors to calculate a "power potential ratio." All told, his methodology enables the deterministic calculation of a winner and the approximate number of casualties on both sides. To bolster his methodology, he concludes that his results are similar to Lanchester's despite the differing methods. Dupuy's methodology, however, never reached acceptance as a viable methodology, and the QJMA model had little lasting effect on modern modeling practice.

Instead, other methods of predicting combat outcomes proved more feasible. Joshua Epstein made a substantive addition to the field with the creation of the adaptive dynamic model that accounts for some of the many shortcomings omitted by Lanchester, including unit maneuvers and diminishing marginal returns on increased force sizes (tactical over-crowding). His model gained some credibility and helped to shape the debate about force postures late in the Cold War. Unfortunately, as Steven Biddle has pointed out, his model shares one weakness with Lanchester's model because it "displays unstable equilibrium behavior." Deterministic calculation induces the flaw by ignoring the realm of chance. As a result, when opposing forces are closely matched, minuscule changes in a single input variable can result in large differences in the outcome.

Contrasting with the exact answers of deterministic models, stochastic models use similar equations but use statistical variability to influence the model's output.³⁶ These models rely on randomness and repeated calculations to create a solution indicating both the needed answer and a perspective on the variability in the solution.³⁷ As a result, they can account for problems with deterministic models and their unstable equilibrium behaviors. The drawback is they require a great deal of computing power. The remarkable leaps in computer tech-

nology over the past half century enabled the rapid growth of stochastic computation and modeling. In turn, these stochastic computer models are facilitating a robust analysis program within the Department of Defense (DOD).³⁸

Ranging from specific tactical analysis to broad strategic simulation, current computer war-gaming techniques offer the potential for enlightening operational strategy. Several technical models, like the trajectory analysis program, provide detailed analyses of air weapon kinematics and lethality that actively shape the development of aerial tactics, techniques, and procedures. On the other end of the spectrum, strategic simulations integrate seamlessly in large-scale war games that help leaders refine their strategic thinking. Modern modeling and simulation techniques also have the potential to shape operational plans.

Planning Operation Desert Storm

During planning for Operation Desert Storm, staffs attempted to estimate aerial attrition for the upcoming campaign. The Air Staff's Checkmate Doctrine Division produced an early effort, dated 27 August 1990. It used a combination of "quantitative analysis, historical experience, and sound professional judgment to derive a reasonable estimate of projected aggregate losses."41 Models developed for a conflict against the Soviets resulted in an estimate of 2 percent attrition. Adding depth to the analysis, they used Operation Linebacker II as a historical model with an overall attrition rate of 1.4 percent. By comparing relevant technological and political factors, the division concluded that an overall attrition rate of between 1 to 2 percent was likely and would result in the loss of 20 to 40 aircraft in the first six days of aerial operations. Unfortunately, it provided no insight regarding which types of aircraft were vulnerable or the reason for their calculated vulnerability.

A later analysis, dated 12 December 1990, by the secretary of defense's Program Analysis and Evaluation Division used a similar but more in-depth methodology that divided attrition rates into four combat categories: air-to-air, interdiction, close air support, and multirole. Using an estimation of 50,000 total sorties resulted in anticipated total losses of 210 fighters, in-

cluding 14 from air-to-air engagements, 71 from interdiction, 88 from close air support, and an additional 36 losses of multirole aircraft. This was obviously not far from the actual Operation Desert Storm tally of 65,000 sorties but a gross overestimation of the actual 38 aircraft losses. Additionally, with an expected campaignwide combat attrition rate of 0.42 percent, this estimate appears executable. Unfortunately, it focused exclusively at the strategic level of war and made little effort at analyzing the operational implications of the prediction.

Taking a closer look at the projected losses compared to the number of aircraft deployed paints a different picture. Using Gulf War Air Power Survey figures for the number of deployed aircraft, 210 losses would equal 15 percent of the coalition fighter and bomber force destroyed. A more detailed breakout indicates projected aircraft loss percentages would equal 7 percent of air-to-air, 27 percent of interdiction, 39 percent of close air support, and 9 percent of multirole aircraft. The estimate also includes 623 "additional battle damage incidents," which suggests that 60 percent of coalition aircraft would either be destroyed or damaged in combat.

The discrepancy may be rooted in the method of calculation, because nominal Air Force attrition rates calculated losses for a massive Soviet confrontation. This model was extremely different from the problem presented by Iraq. Instead of fighting outnumbered and on the defensive against communist hordes, coalition forces were attacking a numerically and qualitatively inferior adversary. The report acknowledged the differences and attempted to account for them by making corrections based on historical evidence. Unfortunately, its examples merely cited different attrition rates but did not account for any of the other relevant differences like the size of the forces or their technological capabilities. Perhaps adding another field of study could have increased their awareness of these issues and improved their estimate.

In *The Art of Wargaming*, Peter Perla suggests that adding exercise analysis could help. He recommends a "continuous cycle of research, war games, exercises, and analysis" as a method of augmenting our understanding of reality.⁴⁸ The US Air Force exercise that serves as the foundation for this work, Red Flag, provides just such an opportunity. Unfortunately, no

attempt to extract Red Flag's lessons beyond the tactical level was available. While it is improbable that this data would have changed the outcome of Desert Storm, equipping the planners with the larger lessons may have improved their prescience about the likely results. Chapter 2 explains the applicability of Red Flag to operational planning and then attempts to extract meaning from the collected data for future reference.

Notes

- 1. Clausewitz, On War, 149.
- 2. Army Field Manual (FM) 6-0, Command and Control of Army Forces, B4-B7.
 - 3. FM 3-0, Operations, 6-5.
 - 4. Sherman, Air Warfare, 35.
 - 5. Reinburg, Air-to-Air Combat in World War II, 10.
 - 6. "The Defeat of the German Air Force," 26.
 - 7. Reinburg, Air-to-Air Combat in World War II, 11.
 - 8. Ibid., 15.
 - 9. Murray, Strategy for Defeat, 254.
 - 10. "The Defeat of the German Air Force," 16.
 - 11. Ibid., 21-23.
 - 12. Jacobs, "Operation Overlord," 277–78.
 - 13. Luttwak, Strategy, 240-41.
 - 14. Air Force Doctrine Document (AFDD) 1, Air Force Basic Doctrine, 22.
 - 15. Maintenance Metrics US Air Force, 34.
 - 16. Ibid., 33.
 - 17. Grabmann, "USAF Historical Studies," 79.
 - 18. "The Defeat of the German Air Force," 27.
 - 19. Murray, Strategy for Defeat, 302.
 - 20. Ibid., 302-3.
 - 21. Sherry, Rise of American Air Power, 79, 91.
- 22. Lilley et al., Problems of Accelerating Aircraft Production during World War II, 92.
- 23. This statement does not suggest that America needs 50,000 combat aircraft in its inventory. Rather the intent is to highlight that changing the American aircraft industry to wartime production rates requires significant warning and years to bring it to fruition.
 - 24. Lanchester, Aircraft in Warfare, 148-50.
 - 25. Keppel and Zedeck, Data Analysis for Research Designs, 202.
- 26. Lanchester, *Aircraft in Warfare*, 55. The author used several terms to describe M over the course of his derivation. *Fighting value* is the most common, but *efficiency* and *effectiveness* are also used.
 - 27. Epstein, Calculus of Conventional War, 3.
 - 28. Fuller, Foundations of the Science of War, 266-71.

REVIEW OF LITERATURE

- 29. Taylor and Neta, "Explicit Analytical Expression for a Lanchester Attrition-Rate," 3–4; Epstein, Calculus of Conventional War, 4–7.
 - 30. Watman, "War Gaming and Its Role in Examining the Future," 57.
 - 31. Ibid.
 - 32. Dupuy, Numbers, Predictions, and War, 33, 51.
 - 33. Ibid., 148-50.
 - 34. Epstein, Calculus of Conventional War, 4–13.
 - 35. Biddle, "European Conventional Balance," 108.
- 36. Thierauf and Klekamp, *Decision Making through Operations Research*, 454-55.
 - 37. Ibid.
- 38. Ball, Fundamentals of Aircraft Combat Survivability Analysis and Design, 143.
 - 39. Ibid., 150.
- 40. E. L. Perry (Air Force War Gaming Institute/Northrop Grumman Contractor), interview by the author, 12 December 2007.
 - 41. "Predicted Attrition for Instant Thunder Air Campaign," 1.
- 42. "Desert Shield Tactical Air Force Combat Losses, Damage, and Munitions Consumption."
 - 43. United States General Accounting Office, Operation Desert Storm, 92.
 - 44. Keaney and Cohen, Gulf War Air Power Survey, 44.
 - 45. Ibid., 27-28.
- 46. "Desert Shield Tactical Air Force Combat Losses, Damage, and Munitions Consumption."
 - 47. Ibid.
 - 48. Perla, Art of Wargaming, 287.

Chapter 2

Methodology Red Flag

Quantities derive from measurements, figures from quantities, comparisons from figures, and victory from comparisons.

—Sun Tzu The Art of War

For more than 30 years, Red Flag has existed as the premier aerial combat training environment in the world. During that time, it has evolved significantly to prepare America's Airmen for war. By providing pilots with their first 10 combat missions insulated from the imminent threat of death, aircrews can learn to survive in a chaotic and lethal environment. Red Flag obviously retains a tactical focus to enhance the skills of aircrews from the newest wingman to the most experienced mission commander. 1 Additionally, by assembling complete aerial force packages in a single location, units have the invaluable opportunity to "train the way we intend to fight" by fully integrating the numerous aircraft capabilities of the US Air Force, joint, and coalition aircraft into a single harmonious and lethal unit.² By constraining the lessons of Red Flag to the tactical level, however, the US Air Force is missing an opportunity to gain operational and strategic insight into the chaotic world of aerial combat.

The combination of excellent airspace, robust threat replication, high-fidelity instrumentation, and zealous debriefs produces an unsurpassed training environment that approaches combat without actually firing live missiles, destroying equipment, and killing. The Nevada Test and Training Range (NTTR) at Nellis Air Force Base outside Las Vegas, Nevada, is an enormous combination of airspace and land ranges that facilitates large-scale aerial training. Covering approximately 12,000 square nautical miles, it provides areas for aircraft to marshal, air refuel, and fight in size similar to the geographic lanes used in combat operations.³ In comparison to familiar recent combat

geography, figure 1 shows the NTTR over a map of Iraq. By land area, the NTTR is one-tenth the size of Iraq and twice the size of Israel. Unfortunately, the entire area is not available for use by Red Flag.

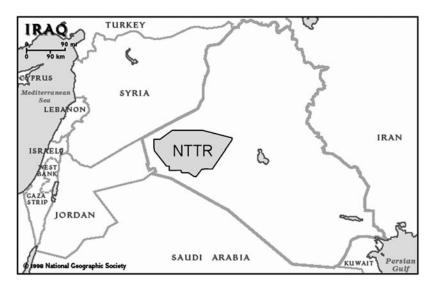
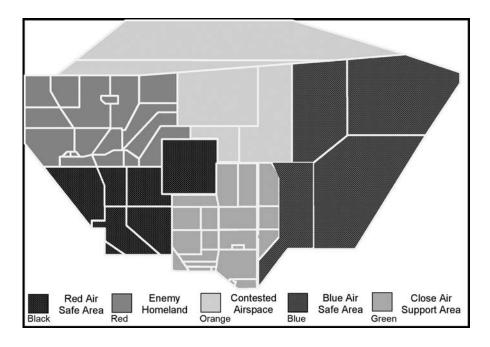



Figure 1. Nevada test and training range (NTTR) size comparison. (Reprinted with permission from *National Geographic* Society online maps).

Five primary areas divide the facility as depicted by figure 2. For Red Flag, the areas in orange, red, and blue are of major interest. Orange represents the area contested only by enemy air assets and small tactical-level SAMs. Red contains heavily defended terrain with the full array of enemy air and ground threats, houses simulated Red Air tactical regeneration airfields, and coincides with the target sets that striker assets plan to attack. As a result, the red area in figure 2 shows the scene of continuous chaos during a mission and is the location of most aircraft losses from a dense collection of SAMs and enemy aircraft. The area depicted in blue provides a location for such command and control assets as Airborne Warning and Control System and aerial refueling during the missions and is considered a blue safe area. Black is either a no-fly area, or it represents restricted areas for Red Air participants only and constitutes an area outside of the exercise. The green area usu-

Figure 2. NTTR airspace functionality. (Reprinted from Red Flag home page [https://www.mil.nellis.af.mil/units/redflag/do/do.asp]).

ally holds close air support training and is off limits to the main strike package. As a result, the red and orange areas constitute the actual area for Red Flag combat maneuver training and cover an area slightly larger than the country of Israel. While a source of consternation for mission planners, the restricted areas are essential for training administration. They also coincidentally introduce restraints common in war. National boundaries and different mission packages in adjacent sectors can all restrict the attack breadth and direction to suboptimal levels.

The 57th Adversary Tactics Group (ATG) is responsible for adding a robust and realistic threat to the outstanding training airspace. As the premier training aid for US personnel, the 57th ATG continually refines its tactics to present an accurate representation of the full spectrum of enemy capabilities.⁴ The 64th and 65th Aggressor Squadrons (AGRS) and the 507th Air Defense Aggressor Squadron (ADAS) are central to the accuracy of the simulation. Flying F-16 and F-15 aircraft, the 64th and 65th AGRS replicate the tactics, techniques, and proce-

dures (TTP) of existing and postulated adversaries. Their pilots are highly experienced and complete a rigorous training program to ensure accurate aircraft and weapons replication. The 507th ADAS adds the second element of air defense by replicating adversary SAM systems within the NTTR. Using a combination of military personnel and civilian contractors, the 507th is continually refining its ability to provide the "best SAM simulation possible." Unfortunately, due to the classification of this paper, the credibility of the 57th ATG cannot be discussed in detail. Based on the author's experience and interviews with operators in all three squadrons, one thing became clear: while there is always room for improvement, the threat replication provided by the 57th ATG is at least as capable as any anticipated enemy without exceeding plausible adversary capabilities.

Another great advantage the NTTR and Red Flag have over combat operations is their instrumentation through a system called the Nellis Air Combat Training System (NACTS). This system provides continuous, real-time updates on the exact locations of every aircraft on the NTTR. While this system is intentionally not used for mission execution, it provides an unparalleled capability for reconstructing the mission afterward. NACTS provides exact parameters and relationships to other aircraft that are continually available for analysis and play an essential role in ensuring the results are as realistic as possible. What used to take hours to reconstruct can be replayed in rapid succession or slowed down to a crawl for detailed scrutiny. As a result, outcomes become less ambiguous and more accurate. This accuracy leads directly to the ability to find root causes for errors, learn from those mistakes, and improve performance the next day. This truth data also prevents the traditionally heated debriefs from degenerating into debates about sequences and outcomes. In total, the synergy of excellent training airspace, adversary support, and accurate post-mission analysis adds greatly to the training environment.⁷

Limitations

Despite these geographically and technologically enabled benefits, some shortcomings in the Red Flag scenario and their execution ensure results will never exactly mirror combat conditions. First, real-world intelligence is never perfect. America's next test in combat may face tactics or weapons previously unknown or unimagined. Such surprises inevitably occur in war. If there is a flaw in the current threat replication, that flaw relies on the precision of intelligence. Adversary crews strive for precise replication of tactics but are rarely free to improvise. As a result, a critical piece of the war is missing from the exercise. War is a conversation between opposing sides.⁸ In its current state, Red Flag is muting half of the dialogue by constraining its aggressor operators from using their systems to the best of their ability. On one hand, this policy makes sense because it provides Blue Air a consistent set of assumptions to fight. Unfortunately, it also trains crews to trust intelligence data implicitly and to solve the problem of aerial combat mechanically. This could lead to a catastrophic problem where units cannot improvise in the face of new enemy tactics not predicted by intelligence sources.

Second, despite the chaotic, free-flowing environment presented by Red Flag, the emotional stress falls well short of combat. Undoubtedly, the capabilities of new wingmen to perceive, comprehend, and react to complex scenarios are greatly enhanced over the course of a two-week Red Flag. The true effects of combat are knowingly absent because real missiles are not flying and losses to enemy action only draw repercussions during debrief. Imagine the difference in a flight leader's mentality launching on his third Red Flag sortie determined not to get another wingman "killed." Then compare that to the emotions of the same pilot launching on a combat sortie back to the same area where his wingman ejected the day prior. Some will react in a highly competitive way determined to make a mark on the enemy, while others may face severe anxiety leading up to the sortie. While the courage to "press on" despite the loss of a wingman is required in both events, Red Flag obviously falls significantly short of combat emotions. Only placing an individual in the real scenario will reveal a true reaction.

Third, since Red Flag is a training exercise, safety takes precedence over realism. In most cases, sound tactics equate to safe execution, and there is no effect on the flow of the mission. Sometimes, however, deconfliction takes the front seat. In these instances, pilots elect not to make a full defensive ef-

fort against the exercise threat and instead ensure deconfliction from other flights in the area. The result is often an official "kill" due to lack of maneuvers when in reality the crew may have survived the same scenario during combat. Similarly, night missions often require aircraft to maintain specific altitudes for the entire duration to guarantee deconfliction from stealth aircraft. This measure for training safety restricts tactical effectiveness and would likely lead to decreases in attrition rates for both sides. The desire for deconfliction does not fade during combat operations. Similar schemes are apparent in combat missions, but pilots are more likely to deviate from planned parameters when the need for survival outweighs the perceived risks of safety.

Fourth, the shot-kill criteria used to determine the outcomes contain known errors that preclude their use as true results. The 83d Fighter Weapons Squadron uses extensive testing through live missile launches with operational squadrons to verify air-to-air weapons capability. The results of the testing go directly toward building detailed models of missile capability throughout their flight to a target. Despite this accuracy, pilots must analyze their shots in real-time while tactically executing a stressful mission. As a result, simplified rules of thumb substitute for complex computer models and enable a sufficiently accurate kill-removal process to take place within the framework of the exercise. This simplification leads to conservative results and potentially fewer than expected kills. 10 On the other end of the spectrum, probability in the exercise becomes a binary, ves-or-no solution. Missiles do not work this way. Each missile will have a varying chance of killing its target between 0 and 100 percent. Actual missile probability of kill (P₁) is determined by the equation: $P_k = P_h P_{k/h}^{-11}$ Probability of hit (P_h) represents the probability of a missile hitting its target. This factor accounts for a complex sequence of events including the missile launch sequence, guidance phase, and fusing at the target. For the training scenario, P_b varies based on simplified understanding of the missile's capability and is 0, 50, or 100 percent effective depending on several factors. Oversimplification leads toward an optimistic result, since most valid shots result in a 100-percent training $P_{\rm h}$. The probability that a hit will result in a kill (P_{k/h}) is a gauge of target aircraft survivability

measured against the missile. Real-world $P_{k/h}$ varies by aircraft based on the specific element of its design in relation to the weapon.¹² In the training simulation, P_{k/h} equals 100 percent for all fighter aircraft. Modern aircraft designs specifically attempt to reduce their vulnerability to missile impact. With numerous examples of aircraft returning with significant combat damage, it is obvious that $P_{\rm k/h}$ is less than 100 percent. An irreparable aircraft sitting on a friendly airbase, however, is just as useless as a crashed one except that a search and recovery mission would not be launched for the downed aircrew. Even reparable aircraft will remain out of the usable inventory for a fixed time before returning to duty. The result is optimistic by forecasting target destruction with every impact. Fortunately, the conservative simulation model and the optimistic missile P_k tend to offset each other. The result is a usable approximation of missile capability, but it will skew the accuracy of the findings away from actual results.¹³

Despite the previously discussed limitations, the Red Flag exercise results in a near-combat experience usable to model modern aerial combat. Since the same conditions influence both sides, the relationships between the opposing forces should remain near their natural, wartime character. The final attrition numbers will inevitably vary from the results of a combat engagement, but they should mirror combat relationships. As a result, it is important to emphasize that the useful part of this analysis will lie in the linkages and not in the specific values of the data. While using this analysis may prove fruitful for anticipating the results of future Red Flag missions, attempting to use the specific results of this data for real-world planning would likely lead to erroneous conclusions and poor strategic decisions. Therefore, Red Flag can serve as a reasonable model for modern combat and is useful for representing combat experiences within the scope of this thesis. The patterns and relationships are therefore the focus of analysis.

Assumptions

In addition to the previously discussed tactical limitations within the Red Flag scenario, some operational level assumptions are required to frame the applicability of the data. Pri-

mary among them is that Red Flag replicates a near-peer competitor with comparable resources to the deployed US military force. The adversary is capable of investing in not only a robust military architecture but also a military force of highly trained professionals who are ready to fight.

Next, the Red Flag scenario does not account for the effects of bombing on future sortie generation for either side. This is most similar to Colonel Warden's Case IV—limited options. In this case, airfields and rear areas are immune from attack either because of "political restraints or because of the physical inability to reach appropriate targets." One example of this scenario is the fight for aerial supremacy during the Korean War when both sides left plans for attacking enemy airfields off the table due to fears of escalating the war toward open global conflict. These political limitations are an unfortunate but occasionally necessary element in warfare that affects the range of options available to military commanders. The Red Flag data may also have utility in other scenarios, but the correlation will be less direct.

Finally, the Red Flag tactics on both sides are high risk, and leaders expect losses. Red Air methodology focuses on a mentality of defending its homeland but also accounts for Blue Air training requirements. Similarly, Blue forces execute using a high-risk mentality where losses are acceptable for mission accomplishment. The result is a fight for survival mentality that guarantees attrition on both sides. This mentality is also common throughout history, with the strategic bombing campaign against Germany during World War II serving as an example of how high-risk missions can produce elevated attrition rates. Changes in acceptable levels of risk for either side would likely decrease the frequency of aerial confrontation but should not affect the attrition values for individual battles within the larger campaign.

Data Set

This study uses Red Flag as a quantitative model to highlight and explain the relationship between mass and technology in aerial combat to advance operational and strategic thought regarding the relationship. This daunting task, if taken as a whole, could lead to an unusable situation confused by the limits of training and result in sweeping generalities irrelevant to strategic and operational users. Instead, by focusing on a single mission area with the fewest possible variables, trends become clearer and correlation more direct.

Red Flag's focus on offensive operations necessitates further focus on the role of OCA in creating air superiority. AFDD 2-1.1, Counterair Operations, defines OCA as "offensive operations aimed at destroying, disrupting, or degrading enemy air and missile threats."17 OCA defines a spectrum of actions that range from direct kinetic attacks by dropping bombs on enemy airfields, known as OCA-surface attack, to the less invasive electronic jamming of enemy surface-to-air radars that is part of OCA suppression of enemy air defenses (SEAD). Within that continuum of aerial combat, one mission, OCA sweep, seeks to destroy airborne enemy assets before they engage other friendly aircraft. The sweep mission holds a unique place with the Red Flag exercise. In the interest of training, friendly strikers, SEAD players, and other friendly aircraft in the exercise continue on their mission after an enemy attack to facilitate their training. Sweep players, on the other hand, exist within the scenario and face immediate kill removal during execution. Kill removal is not permanent, since sweep players can regenerate after exiting the fight area, but the immediate removal ensures that the sweep scenario more closely replicates the lessons of combat.

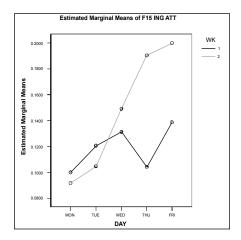
Focusing on the initial OCA-sweep missions inside the exercise provides several other advantages. First, the F-15C, the primary OCA-sweep aircraft of the US Air Force, has changed little between 2001 and 2005. Despite updated software suites enabling subtle new capabilities, its primary tactics and weapons have remained similar for the entire period. Critical capabilities like beyond visual range (BVR) identification, Link-16 data sharing, and the advanced medium-range air-to-air missile (AMRAAM) have remained constant throughout the period. Significant additional capabilities include the joint helmet mounted cueing system and the AIM-9X heat-seeking missile in 2004–7. While these systems greatly enhance the F-15C's lethality in a visual engagement, most of the engagements occur with the AMRAAM at longer ranges. Therefore, a significant difference between the results should not exist. By further fo-

cusing the investigation on ingress results, the data remains less affected by the friction of the training environment. After the initial sweep, "killed" aircraft clutter the airspace transiting toward regeneration areas or returning to base. This added ambiguity often leads directly to artificial results from erroneous tactical decisions based on poor situational awareness and the inability to identify enemies as dead or alive. The ingress sweep phase, however, does retain the positive stresses of Red Flag, since both air and ground threats are present.

Arcata Associates, Inc., under contract to the US Air Force since 1999, collects the data used in this thesis for assessing the effectiveness of units during the course of each two-week Red Flag exercise. Each data point was collected during the detailed debriefs after each of 784 missions. 18 Although Arcata employees are not involved in the analysis process, they personally record the arbitrated debrief results and consolidate the information into a single source database for each Red Flag. A macro consolidates individual Red Flag databases into a single document for analysis. Extracting additional information on threats from the Air Combat Command after action reports provided the data necessary to analyze the effects of adversary tactics on mission results. Unfortunately, since the reports were generated to summarize training and not facilitate analysis, several are missing data or lack the detail necessary to be useful in this study. As a result, the viable data set decreased by 338 missions (216 before 2001; 42 in 2001; one in 2002; 60 in 2005; and 19 in 2006) to 446. Additionally, a major change in the Red Flag scenario occurred starting in 2006. Red Flag added several new scenarios, and the adversary threats shifted significantly to replicate a modernized threat scenario. While this is a great enhancement for US Air Force training and readiness, it represents a qualitative shift in the data for this analysis. While data collected starting in 2006 should more accurately represent a fully modernized adversary, the small number of available data points and additional scenarios hinders this analysis. 19 As a result, the remaining 320 missions from 2001 to 2005 provide a focused data set with reasonably consistent conditions for analysis.

Within the 320 remaining missions, no OCA-sweep aircraft launched on six missions, and a single F-15C that launched

without additional OCA support accounted for another: all seven cases were removed. Additionally, four missions dropped out because they recorded zero losses on both sides for the ingress sweep. This was likely due to an in-flight emergency or other training-related termination of the fight. Arcata deletes incomplete results caused by administrative procedures. Finally, Red Air presented a MiG-21 threat on two missions in 2004. With only two missions, they represent no statistical benefit for the analysis and were deleted. This left 307 effective missions with 299 containing F-15Cs as the primary or sole element in the sweep. The N of 299 missions is the basis for the analysis, except when analysis requires the additional information.


The data set covers the results of execution for each flight of aircraft regardless of mission and includes basic measures of effectiveness depending on the specific mission area. As a result, air-to-air engagements and air-to-ground mission success rates are available for each flight. One difference between air-to-air and air-to-ground data collection is the break point between the ingress and egress units of measure. The dividing line for air-to-ground missions is weapons release on target. Air-to-air ingress data transitions at the reset of the preliminary aggressor tactic.²¹ This difference in break point leads to an inaccurate accounting of aerial kills between strikers and aggressors since striker ingress can take place after the first presentation. As a result, it is not possible to correlate striker losses or air-to-air kills using this data.

Data Analysis

The analysis used both Excel and Statistical Program for the Social Sciences (more commonly referred to as SPSS) version 12.0.1 to determine the significance of results and produce the outputs for this paper. Statistical tests used in this analysis to determine significance and correlation include frequencies, percentages, correlations, t-tests, and analysis of variance (ANOVA). Correlations will use Pearson's correlation coefficient. Tukey's honestly significant difference (HSD) post-hoc analysis methodology will support initial ANOVA results, assuming Levene's test for homogeneity proves insignificant. Regression analysis using the method of least squares provided the predic-

tive trends of future results. Analysis relied on the 0.05 level of significance for evaluation.

Since Red Flag is a training environment, it is essential to understand when changes in attrition are due to changes in participant training level. Traditional lore would predict a decrease in Blue and an increase in Red attrition over the two-week exercise due to increased aircrew proficiency. The threat, however, continually increases over the same time-span. Logic would therefore suggest an increase in Blue and a decrease in Red attrition over the same time span. Figure 3 shows the averages for both F-15 and Red Air ingress attrition broken out by week and day.

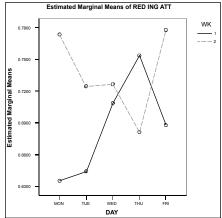


Figure 3. Daily attrition variation.

Contrary to the expected decrease in F-15C attrition, figure 3 indicates a trend of increasing attrition over the course of both weeks one and two. Additionally, attrition is nearly identical or greater in week two when compared to the same day in week one. This is exactly opposite of the expected results if training and pilot skill were the only factors. A T-test indicates no significant differences in the attrition between weeks one and two. ANOVA analysis also indicates no significant variation amongst the days for each week except for between Monday and Thursday on week two (p=0.045). The Red Air trends match more closely the expected results. Week one follows a gradual in-

crease in Red losses, while week two remains relatively constant, but neither analysis indicated any statistically significant variation in the averages. As a result, the trends indicate that the increase in the scenario's difficulty likely exceeds the increased skill over the course of the week (appendix A3).

Between 2001 and 2005, F-15C attrition decreased, and Red Air attrition increased over the same period as indicated in figure 4. ANOVA analysis indicated a significant variation in both F-15C (F=2.993/p=0.019) and Red Air (F=12.627/p=0.000) attrition (appendix A1). Tukey's HSD test revealed a significant difference in F-15C attrition between 2001 and 2004 (p=0.012) only. Similarly Red Air attrition in 2001 varied significantly (p=0.000) between all other years.

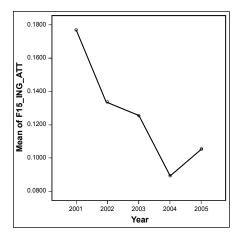
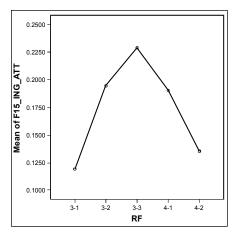



Figure 4. Yearly attrition variation.

Further inspection of 2001 reveals insignificant variation in F-15C attrition but significant variation in Red Air attrition (F=3.015/p=0.024 in appendix A2). Tukey's HSD test indicates Red Flag 2001 3-2 varied significantly from 2001 4-2 (p=0.019) as depicted in figure 5. The Red Flag 2001 3-2 after action report indicated weather problems that forced mission changes and restrictions to account for exercise safety. Interestingly, the initial suggestion is that adverse weather decreases Red Air attrition. Normal safety precautions cuff Red Air maneuvers during weather days and would therefore suggest an increase in Red

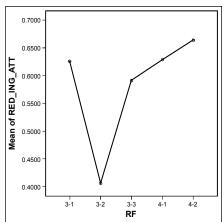
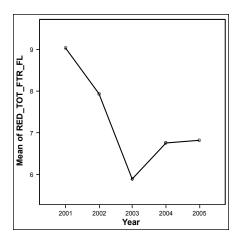



Figure 5. 2001 attrition variation.

Air attrition due to more predictable and therefore less-effective maneuvers. Unfortunately, Arcata data does not track weather conditions or restrictions sufficiently to explore the ramifications of weather on attrition occurring on all Red Flag missions.

The counterintuitive trend, however, suggested there might be another source for the changes in attrition. Checking for variation in other factors reveals that the 2001 anomaly is more likely due to differences in simulation instead of weather. Using an ANOVA test to analyze the numbers of aircraft flown on each side in Red Flag 2001 3-2 indicates a significant change in the numbers of aircraft flown. F-15C numbers increased slightly from a year average by approximately one sortie per mission to 8.53 (p=.024), while Red Air sorties increased by over three sorties per mission to 11.67 (p=0.000).

Taking this observation and stepping back to the yearly analysis reveals a similar trend. The year 2001 boasts the highest number of Red Air sorties and a comparatively low number of F-15C sorties when compared to 2002–2005. The significantly higher than average F-15 attrition and lower Red Air attrition in figure 4 noticeably corresponds with the significantly higher than average (p=0.001) number of Red Air in 2001 as depicted in figure 6. Similarly, the Tukey HSD test confirms a significantly lower number of F-15C sorties in 2001 as compared to both 2002 and 2004.

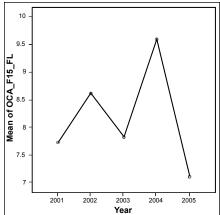


Figure 6. Yearly average sortie variation.

The trend becomes clearer by transforming the raw numbers of aircraft into a force ratio. Dividing the total number of F-15C aircraft on a mission by the total number of Red Air present provides a simple number comparing the relative strength of each side. Force ratios greater than one indicate F-15C numerical advantage, while quantities less than one give the advantage to the Red Air. Figure 7 clearly depicts the difference in force ratios between 2001 and 2002–2005, because it is the

only year when on average Red Air outnumbers F-15C aircraft (appendix A1). ANOVA testing confirms the difference (F=18.539/p=.000). A follow-on Tukey HSD test confirms that 2001 is significantly different from 2002 (p=0.008), 2003 (p=0.000), and 2004 (p=0.000).

By comparing figure 7 to figure 4, the correlation between force ratio and attrition becomes clearer. The year 2001 is characterized by the only force ratio numerically

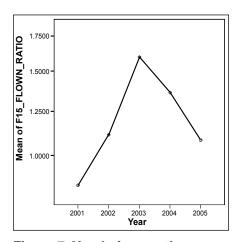


Figure 7. Yearly force ratios.

in favor of Red Air. Predictably, F-15C attrition is highest, and Red Air attrition is lowest in 2001. A Pearson two-tailed correlation test confirms the association (appendix A10). Using the logarithm of the force ratio, F-15C attrition correlates at -0.297 (p=0.000), and Red Air attrition correlates at 0.396 (p=0.000). Neither correlation is strong enough, from a purely scientific standpoint, to suggest this is the sole cause. However, given the chaotic nature of combat and the other independent variables present, this is expected. Additionally, the high level of significance suggests utility in using force ratio for predicting attrition on both sides over using only the historical average.

This common measure of relative strength, however, is not without shortcomings. First, it tends to mask the increasing complexity of large formation battles. For example, a one-versus-one duel is numerically equal to an exceedingly chaotic 100-versus-100 mêlée. Since the Red Flag scenario is built around eight scheduled F-15C sorties, this issue becomes less of a problem, but it has the potential to give false impressions if the data is extrapolated to very large or very small formations. Additionally, the ratio compresses Red Air numerical advantages into a small range between zero and one, while F-15C advantages range from one to infinity. Representing all ratios on a logarithmic scale easily alleviates this problem by balancing the presentation around the 1:1 ratio.

The suggestion that an increase in the number of opposition forces will negatively influence the outcome of the engagement is as old as war itself and is useless without understanding how other variables interact with it. In addition to the number of aircraft on each mission. Arcata collects data on 12 other independent variables. As explained earlier, weather data is not collected, but sorties are broken down between day-and-night missions. Recent combat experience suggests American night vision goggle (NVG) tactics should represent a distinct advantage. Initial analysis of the entire data set using an independent samples T-test indicates F-15C attrition drops by 3.67 percent (p=0.037), and Red Air attrition increases by 6.43 percent (p=0.014) during hours of darkness (appendix A4). This potential difference is explored with better fidelity later in this analysis by including such additional variables as adversary weapons and tactics within the final data set. For now, with a 10 percent difference in attrition favoring Blue Air, the night advantage needs further exploration.

The remaining 11 variables describe the capabilities of the adversary and include threat aircraft, weapon, threat tactics, electronic attack, regeneration rate, reaction level, maximum number of live groups, surface-to-air missile rules of engagement, surface-to-air missile proficiency, communications jamming, and ground-based radar jamming. Attempting to analyze each variable independently led to insignificantly small groups that yielded little or no useful information. Factor analysis (appendix A11) suggests two discrete groups for examination in addition to the force ratio and day/night variables already discussed.

The first and largest group includes nine tactical variables used to describe the adversary's less-obvious technical and training capabilities. The first five—tactics, electronic attack, regeneration rate, reaction level, and maximum number of groups—all directly influence the OCA-sweep mission. Two variables, SAM readiness levels and SAM rules of engagement, deal directly with the ground threat. Although apparently extraneous to this analysis, these variables may affect the ability of OCA-sweep aircraft to pursue Red Air into hostile territory and add to the chaos of the operational environment. Finally, Radio Electronic Combat and Big Crow simulate ground-based jammers and their effects on Blue performance. Unfortunately, the Red Flag training environment adjusts the whole group of variables simultaneously to replicate an overall threat change. As a result, a Pearson Bivariate Correlation test reveals that the variables significantly correlate to each other (r≥ 0.501, p=0.000) except maximum number of live groups ($r \ge 0.302$, p=0.000) (appendix A9). This indicates the variables change—together within the scenario and, therefore, the effects of individual variables—are unfortunately beyond the fidelity of this data.

The second group, consisting of adversary aircraft and weapons capabilities, is more useful. Threat aircraft simulations include MiG-23, MiG-29, and SU-27 by the 57th ATG aggressor aircraft. Between 2001 and 2005, F-16s replicated this significant spectrum of threat capabilities. Although aggressor threat-replication standards try to replicate enemy capability accurately, there is the potential for an undesired uniformity in

performance. This is especially apparent at the merge, where actual aircraft flight characteristics are most prominent. In the radar missile BVR engagement, however, aggressor replication specifically restricts the use of aircraft systems and reactions to match expected threat capabilities. ²² A threat aircraft ANOVA analysis suggests a significant variation in attrition for F-15C (F=6.562/p=0.002), but Red Air variation is insignificant. With sufficient homogeneity, the Tukey HSD comparison shows significant variation between both the MiG-23 and MiG-29 when compared with the SU-27 simulation for the F-15C (p=0.005/p=0.020) attrition. Variations in Red Air attrition were insignificant (fig. 8 and appendix A5).

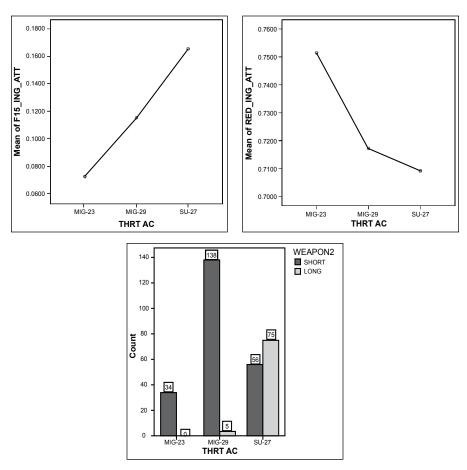


Figure 8. Attrition variation versus threat aircraft.

Similarly, threat weapons capability follows an almost identical path (fig. 9). Aggressor threat matrices weapons categories included short (MiG-23/N=34, MiG-29/N=138, SU-27/N=56) and long (MiG-29/N=4 and SU-27/N=75) air-to-air missile simulations. T-test analysis identified significant variation within both F-15C (p=0.012) attrition with Red Air attrition being insignificant (appendix A6). This mixed combination of weapons and simulated aircraft makes determining differences between the MiG-29 and SU-27 simulation difficult. Holding one variable steady and then analyzing the other simplify this problem.

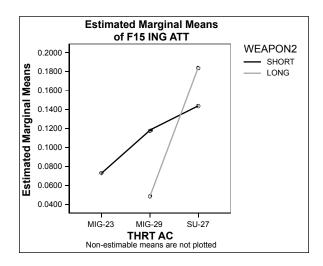


Figure 9. Threat weapon and aircraft comparison.

First, by selecting only the short weapon and second running an aircraft ANOVA analysis, no statistically significant difference appears in any of the three attrition categories, despite a mean increase in attrition proceeding from the low MiG-23, through MiG-29, to SU-27. Similarly, an independent sample T-test comparing MiG-29 and SU-27 with short weapons results in no significant difference. With the long missile MiG-29 (N=4) small sample size, no adequate comparison is feasible. Looking at the SU-27 and comparing the short and long missile also produce an insignificant difference in any of the three attrition rates. By correlating MiG-29 aircraft with short missiles and SU-27 aircraft with long missiles, a significant difference

emerges for the F-15C (p=0.025). Similarly, by adding MiG-23 short missions back into the mix with the MiG-29, the significance continues for F-15C (p=0.004) attrition (appendix A7).

This grouping of the MiG-23 and the MiG-29 with the short missile compared to the SU-27 with the long missile provides many advantages for analysis. First, both data sets provide relatively large sample sizes (N=239) as depicted in figure 10 with significant variations in Blue Air attrition between day and night (appendix A8). Additionally, the pairing presents two different categories of enemies. The short MiG-23/29 pair represents a country with an early fourth-generation fighter capability similar to the threats America faced in Operations Desert Storm and Allied Force. The long SU-27 combination represents a country further along the technological road attempting to compete qualitatively with the F-15C. This dialectic provides the metaphor for analysis in this thesis. First, the short MiG-23/29 scenario provides sufficient data for attrition trend identification and the Blue versus Red comparison. With the relevant factors and decision points identified, the long SU-27 scenario introduces a change in enemy technology, which facilitates the exploration of the ramifications on Blue capabilities.

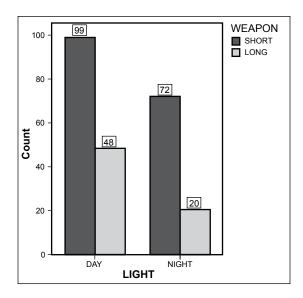
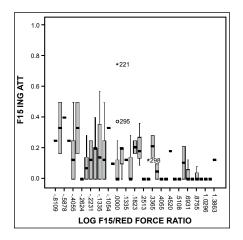


Figure 10. Final data breakdown.


With the final data set defined for study, it is time to try to find order in the chaos of combat. Since this thesis explores relationships and does not seek to gain specific values for prediction, analysis focuses on comparisons with the intent of highlighting relationships for future study. Before proceeding further, however, it is important to confirm the previous observations within the final data set. Running a Pearson two-tailed correlation test with the entire group (N=239) indicates continued significant correlation between the force ratio and F-15C (-0.304/p=0.000) and Red Air (0.368/0.000) attrition (appendix A12). Additionally, F-15C attrition correlates with the aircraft weapons pairing (0.214/p=0.001), but Red Air does not change significantly. Finally, day/night does not represent a significant correlation for either F-15C or Red Air attrition within the final data set. With that in mind, analysis focuses completely on the short MiG-23/29 and the long SU-27 relationship to infer the potential ramifications of the enemy introducing new technology on the battlefield.

The short MiG-23/29 scenario provides the starting point and therefore requires a detailed explanation of the relationships and analysis. This process attempts to extract useful information from the confusion of Red Flag. Figure 11 contains scatter plots of both F-15C and Red Air attrition plotted against the logarithm of the force ratio.

Figure 11. MiG-23/29 short scatter plot.

Although neither the F-15C nor the Red Air data groups neatly around a central line, the general trend is clear: increasing the force ratio for a mission results in decreasing F-15C and increasing Red Air attrition. Another way to visualize this trend is by using a box plot as shown in figure 12. It helps to visualize trends in the data not initially evident in the scatter plot. Each line indicates a single force ratio and the variance of the data with the solid area representing the central 50 percent and the whisker reaching out to accommodate most of the remaining data. Points with numbers next to them indicate outliers from the main body of the data. The dark mark near the center of each indicates the median value.

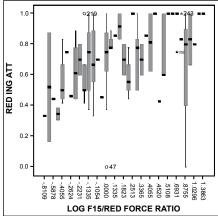


Figure 12. MiG-23/29 short attrition box plot.

This chart again supports the correlation between force ratio and attrition. Therefore, regression analysis may provide a useful equation to represent the data. While several non-linear regression methods may eventually prove more applicable to a larger data set, basic linear regression based on the logarithm of force ratio is most applicable in this case for two reasons. First, since Red Flag is a military exercise and not a scientific test, the data is not evenly distributed. Instead, figure 13 reveals a nearly normal distribution of data centering on an even 1:1 force ratio (i.e., log[1] = 0), which falls in line with normal exercise planning factors of scheduling nearly equal numbers

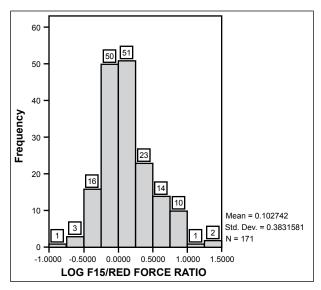
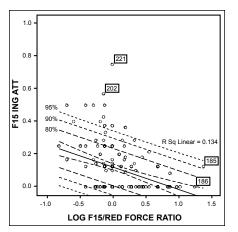



Figure 13. MiG-23/29 short force ratio histogram.

of air-to-air sorties for each side. As a result, the data confidence is best in the center and becomes less reliable at both extremes. The second problem with the data is that the data do not cover the entire range of possible outcomes. While both F-15C and Red Air attrition appear to anchor near their extremes, approaching 0 percent and 100 percent attrition respectively, on the right side of figure 12, neither side approaches the opposite extreme. This missing data leave much doubt about the natural trends as the force ratio moves left and favors Red Air. With these limitations in mind, linear regression provides a baseline analysis. Future studies with more complete data, however, may suggest other, more complex relationships.

Forward stepwise regression using the tactical variables recommends eliminating the other factors from the analysis except force ratio (appendix B1). Figure 14 represents the regression results for both F-15C and Red Air with representations for error analysis. Taking a closer look at both the F-15C and the Red Air data reveals several trends common in this analysis. First, ANOVA testing indicates that the regression line accounts for only about 14 percent of the data variation but that the variation is not due to chance for either the F-15C (F=26.078/p=0.000) or Red Air (29.618/p=0.000). Similarly, the model's

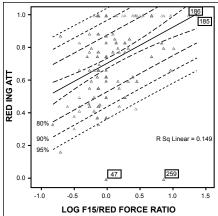


Figure 14. MiG-23/29 short regression results.

R-squared values of 0.134 for the F-15C and 0.149 for Red Air corroborate the weak correlation but also suggest that using the model is better than using the average attrition alone. Casewise diagnostics highlight two outliers for each case highlighted in figure 14 (F-15C-#s 202/221, Red Air-#s 47/259). Additionally, points 185 and 186 have disproportionate influence on the regression for both sides. In all cases, historical data did not indicate any influences that would suggest any reason to exclude the data and inclusion did not detract from correlation. Therefore, their influence is noted, but they remain as part of the analysis.

Using the same forward stepwise multiple regression technique for the long SU-27 scenario did not work as smoothly. Initial ANOVA testing suggested a weaker correlation for the F-15C (F=3.454/p=0.068) but significant correlation (F=7.310/p=0.009) for Red Air (appendix B2). Two points (119/228) had excessive influence within both data sets. Again, neither case suggested abnormal circumstances for the scenario, but 228 was a Friday night mission on the second week of a Red Flag. Normal Red Flag protocol requires units to depart on Saturday to make room for follow-on units. Therefore, pilot motivation to shorten the debriefing process by minimizing shots and kills may have decreased performance, but there is no specific evidence to support this hypothesis. While this speculation is not

sufficient in and of itself, the small data set is less tolerant of abnormality. By removing mission number 228 from the data set, the regression returns to the same pattern observed in both of the short MiG-23/29 and the Red Air long SU-27 analyses for the F-15C (F=5.778/p=0.019) and Red Air (F=7.531/p=0.008) as depicted in figure 15. With that in mind, mission 228 was removed from the analysis as an anomaly but kept in the database for future use. Other outliers were retained in the analysis. As expected with the smaller data set and large variance shown in figure 15, the error size is larger but still better than using the mean to predict attrition.

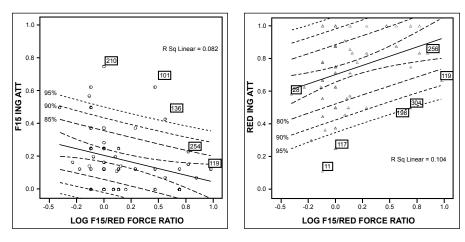


Figure 15. SU-27 long regression lines.

Before moving to the explanation of the results, it is important to explain one of the limitations of the linear regression lines. Attrition values cannot logically exceed 100 or go below 0 percent. On the low end of the spectrum, some aircraft will inevitably fail due to mechanical problems or pilot error. Similarly, no matter how disadvantageous the scenario, a chance for survival always exists. As a result, a complete data set would logically indicate a line approaching a logistic curve with both extremes asymptotically approaching but never reaching either 0 or 100 percent. To prevent the regression lines from violating the limits of reality, their values have arbitrarily been limited to between 0.5 and 99.5 percent. Future studies should adjust

these values based on observed and calculated data not available in this study.

The four regression models just discussed form the basis of analysis for the remainder of the study. Their wide confidence intervals combined with the disproportionate influence of a few outliers highlight the inadequacy of the data from a scientific standpoint. The consistency between the four models, however, suggests a baseline validity to the correlation between force ratio and attrition. Chapter 3 makes use of these models to suggest methods commanders and planners can use for future planning efforts. The inaccuracies inherent in the regression models caused by the training environment skew the values away from similar data collected for testing purposes. Therefore, the specific values calculated in the following pages attempt to explain a thought process and highlight decision points instead of making predictions about real world combat.

Notes

- 1. "Tenets of Red Flag."
- 2. Ibid.
- 3. Nevada Test & Training Range (NTTR) Briefing.
- 4. Col David R. Stilwell (Commander, 57th Adversary Tactics Group), interview by the author, 5 December 2007.
- 5. Lt Col Steven D. Imonti (64th Aggressor Squadron/DOO, Aggressor 1995–2007), interview by the author, 3 December 2007.
- 6. Lt Col Robert J. Smith (Commander, 507th Air Defense Aggressor Squadron), interview by the author, 4 December 2007.
- 7. Lt Col Thomas A. Bouley (Deputy Commander, 414th Combat Training Squadron–Red Flag), interview by the author, 4 December 2007.
 - 8. Clausewitz, On War, 77.
- $9.\ Lt\ Col\ James\ A.\ Rousseau$ (507th Electronic Warfare Officer), interview by the author, 4 December 2007.
- 10. Maj Jon K. Tinsley (USAF Air-Air Weapons System Evaluation Program F-16 Program Manager), e-mail interview by the author, 14 April 2008.
- 11. Ball, Fundamentals of Aircraft Combat Survivability Analysis and Design, 10–12.
 - 12. Ibid., 603.
 - 13. Tinsley, interview.
 - 14. Warden, Air Campaign, 66.
- 15. Hone, "Korea," 467. For a more nuanced view regarding the sanctuary of MiG bases north of the Yalu, see Werrell, "Across the Yalu," 451–75. Dr. Werrell highlights the unassigned raids American pilots took across the Yalu to reduce the strategic sanctuary the communists enjoyed north of the Yalu.

While tactically rewarding, these missions risked global escalation and set a dangerous precedent that supported tactical action over following strategic orders within US Air Force squadrons.

- 16. Capt Ryan A. Howland (64th Aggressor Squadron/DOO, Mig-29 SME), interview by the author, 3 December 2007
 - 17. Air Force Doctrine Document (AFDD) 2-1.1, Counterair Operations, 11.
- 18. Everett L. Clason (ARCATA Associates Red Flag Analysis Program Manager), interview by the author, 3–5 December 2007.
- 19. Starting in 2006, adversary threat replication expanded to include the SU-30 and actively guided air-to-air missiles. Thursday scenarios changed to a DCA mission for F-15Cs separated from the remaining Red Flag participants. Other factors affecting the homogeneity of the simulation, such as a more complete and active Red Force increased the level of training "fog" in the scenario. Future classified analysis of the post-2006 results may be extremely useful but is beyond the scope and classification of this thesis.
- $20.\ Hugh\ H.\ Lester$ (ARCATA Associates Night Air-Air Mission Analyst), interview by the author, 3–5 December 2007.
- 21. Don Newell (ARCATA Associates Day Air-Air Mission Analyst), interview by the author, 3–5 December 2007.
 - 22. Imonti, interview.

Chapter 3

Results

We will need those extra planes because this is an aerial war in which one or the other of the combatants will be driven from the sky — and it won't be us. This is a grim struggle in which anything goes. . . . The only thing that counts is the score. Did you kill the enemy or did he kill you?

—Lt Gen Henry H. Arnold "Our Air Force after One Year at War"

The regression models built in chapter 2 are of little value unless they can help shape operational plans and inform strategic decisions. To be useful, the model must answer vital questions that shape an air campaign and more specifically the air superiority campaign against enemy aircraft. What is the enemy's most dangerous course of action? How much mass is needed to accomplish the objective? Will more aircraft increase the chances of success? If more aircraft will help, how much of an advantage will they provide? These questions frame the essential elements of the initial air campaign plan.

Once the plan is enacted, the commander also needs a method to inform him of the ramifications of actual events and to illuminate decision points for greater advantage. Are the plan's assumptions valid? Is there a better plan for defeating the actual enemy course of action? How long will it take before we are ready to enter the next phase of execution? Do we need reinforcements, and if so, how many? What is the potential effect of a new enemy technology on the battle-field? Anticipating the answers to these questions can avert battlefield disaster by keeping operations short of a culminating point. Additionally, correctly assessing the tide of war and making the appropriate adjustments stands at the core of the operational art.

Bounding these operational questions are strategic decisions about numbers and types of aircraft made years or even decades before a confrontation erupts. Between the end of World War II and the demise of the Soviet Union, American defense policy focused on opposing the gigantic Soviet threat and averting global catastrophe. This emphasis was obviously unavoidable based on the perceived menace of Communism and the immense size of the Soviet military. Today's reality, however, requires a different balance between both fiscal responsibility and a ready and capable force structured for victory against a robust opponent. Therefore, a better understanding of the requirements is essential to ensure an adequate strength to meet the nation's grand strategy but at minimum cost. Finding a method for understanding the relationships is essential for enhancing the decision process. The following pages present one method of organizing the information and augmenting a commander's understanding of aerial warfare before the first combat sortie launches.

Operational Use

Taken individually, the regression lines of both the F-15C and Red Air provide little relevant insight. In fact, they appear to be both banal and a confirmation of obvious conventional wisdom. Insinuating that adding more aircraft to a mission decreases Blue losses and increases Red losses is common sense and requires no further discussion. Plotting the lines together, however, proves powerful in augmenting the understanding of aerial combat. Figure 16 plots both lines together with the scatter chart data and 95 percent confidence intervals.

Before proceeding further, understand the importance of each chart element. The X-axis plots force ratio on a logarithmic scale, and the Y-axis represents expected attrition rate between 0 and 100 percent. The areas in gray indicate the regions not represented by Red Flag data and are therefore only extrapolations of observed trends. Future graphs will continue to include this feature to emphasize which regions of the graphs represent actual data. It is also essential to emphasize that although future graphs will indicate the regression line only, they do not represent the only possible result from any single engagement. Instead, the regression lines represent the averaged peaks of the individual bell curves for each force ratio. As an

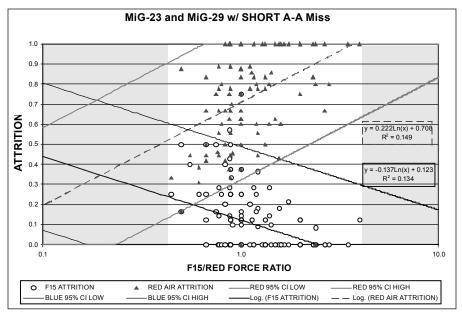
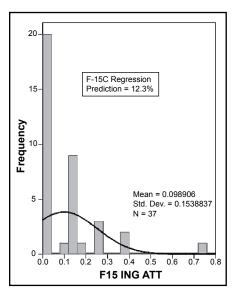



Figure 16. MiG-23/29 short attrition lines log scale.

example, figure 17 represents the distribution of points at an even 1.0 force ratio.

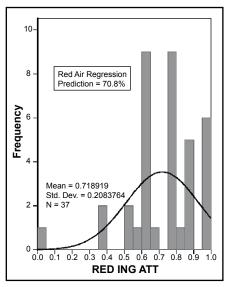


Figure 17. 1:1 (1.0) Force ratio histogram.

Therefore, remember in subsequent charts that there will be deviations from the regression line for individual missions. Over time, however, the averages of several missions will move closer toward the regression line. As emphasized in chapter 1 during the discussions of Lanchester's method, there is clarity with deterministic solutions that can conceptualize expectations for the commander. Unlike his method, however, this conceptualization adds a view of statistical variability that can further augment a commander's judgment about the amount of risk the plan accounts for and even how the battle is progressing.

Remember that figure 16 represents a combination of three different values that prove helpful in calculating most of the information needed for analyzing an air superiority campaign. Each of the attrition lines (B_{att} and R_{att}) represents the expected losses for each side divided by the total number of sorties where the variables B and R indicate F-15C and Red Air respectively.

$$B_{\text{att}} = \frac{B_{\text{loss}}}{B_{\text{total}}} \tag{1}$$

$$R_{att} = \frac{R_{loss}}{R_{total}} \tag{2}$$

The force ratio (F_{rat}) represented on the X-axis is the ratio of Blue sorties to Red sorties.

$$F_{rat} = \frac{B_{total}}{R_{total}} \tag{3}$$

With this in mind, the graph represents the interaction of the two competing weapon systems, all Blue losses (B $_{loss}$) represent Red kills (R $_{kill}$), and Red losses (R $_{loss}$) represent Blue kills (B $_{kill}$). Therefore, attrition equations 1 and 2 can be modified as the following:

$$B_{att} = \frac{B_{loss}}{B_{total}} = \frac{R_{kill}}{B_{total}}$$

$$R_{att} = \frac{R_{loss}}{R_{total}} = \frac{B_{kill}}{R_{total}}$$
(4)

Dividing R_{att} by B_{att} results in the attrition ratio (A_{rat}) for each force ratio. By simplifying the factors using the refined values

for attrition taken from equation 4, attrition ratio equals the following:

$$A_{rat} = \frac{R_{att}}{B_{att}} = \frac{\frac{B_{kill}}{R_{total}}}{\frac{R_{kill}}{B_{total}}} = \left(\frac{B_{kill}}{R_{kill}}\right) \left(\frac{B_{total}}{R_{total}}\right)$$
(5)

Since kill ratio (K_{rat}) is the number of Blue kills divided by Red kills,

$$K_{rat} = \frac{B_{kill}}{R_{kill}} \tag{6}$$

further simplification of equation 5 results in the realization that the attrition ratio equals kill ratio (equation 6) times force ratio (equation 3).

$$A_{rat} = \left(\frac{B_{kill}}{R_{kill}}\right) \left(\frac{B_{tot}}{R_{tot}}\right) = K_{rat} F_{rat}$$
 (7)

Therefore, kill ratio equals attrition ratio divided by force ratio.

$$\therefore K_{rat} = \frac{A_{rat}}{F_{rat}}$$
 (8)

As identified in chapter 1, kill ratio is an important operational measure of merit for assessment. Plotting kill ratio from the attrition lines results in a line with a sideways S pattern as shown in figure 18. The secondary axis to the right side of the graph indicates values for kill ratio displayed on a logarithmic scale. Between the force ratios of 0.1 and 0.8, the kill ratio remains nearly constant at approximately five blue kills to one red kill. At an even force ratio of 1:1, the F-15C is winning by an average of 5.8 to one. Once the force ratio reaches 2:1, the F-15C kill ratio reaches 15.4:1. The actual data confirms the predicted trends. In the 24 missions with a force ratio greater than or equal to 2.0, the average kill ratio is 18.4:1. The 22 missions

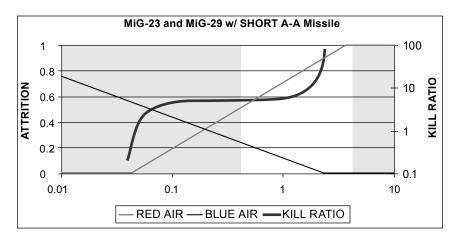


Figure 18. MiG-23/29 short kill ratio.

with a force ratio less than or equal to 0.8 indicate a kill ratio of only 4.5:1.

The shape of the kill ratio curve in this study suggests the presence of three regions of aerial combat that require different strategies. The first region, decisive air superiority, consists of the region where kill ratio is on the dramatic increase. Assuming the data used in the analysis is reasonably close to actual conditions, commanders could expect a high kill ratio with disproportionate enemy losses and a rapid establishment of air supremacy. For this scenario, force ratios greater than 1.0 are a good starting place, with a peak kill ratio of 73:1 at the force ratio of 2.47, where F-15C attrition approaches zero. After that point, inefficiency starts to decrease the kill ratio slightly due to the increased number of aircraft exposed to the risk of combat without the ability to increase the toll on enemy forces. The decrease in kill ratio passed the 2.47 force ratio is, however, insignificant compared to the benefit of overwhelming enemy forces. As a result, larger force ratios would likely add assurance to the outcome by increasing the probability that missions would return with zero losses. Unfortunately, larger force ratios would also decrease efficiency as the additional sorties generate little excess effect since Red attrition is already near 100 percent.

The second region, numeric attrition, is captured by the flat kill ratio plateau between the force ratio of 0.1 and 1.0. Incremental adjustments in the force ratio within this region will have little or no observable effect on the kill ratio between the two sides. If forced to fight in this regime, raw numbers, morale, and the industrial base to produce more aircraft become the deciding factor in victory. Arguably, this region describes most combat experiences, especially early in a campaign when forces are fresh. Once attrition starts, the physical realities of the interaction between the forces bind a commander's options. Additionally, factors like tactical and technological change become significant in determining the campaign's outcome since they may shift the attrition rate more significantly than small changes in the force ratio. The next section explores the effects of new technology on the battlefield in more detail, but it is important to emphasize its potential here.

The third region, desperate measures, exists on the descending curve of enemy superiority. With force ratios falling below 0.1, this scenario would result in an exponential loss of aircraft with little return, besides making a show of effort. Within this region, commanders face gigantic strategic problems with maintaining a viable force, let alone gaining air superiority. Depending on the scenario, commanders must choose between making a last valiant stand, piecemealing their forces with little effect, and attempting to shelter their forces for future use.

In addition to kill ratio, a measure of air superiority is also helpful for projecting the follow-on options for the other essential parts of the air campaign. If the initial sweep eliminates most enemy aircraft, following waves of strike aircraft can eliminate the remaining threat and accomplish the air campaign mission without undue reductions in effectiveness. As the number of surviving enemy aircraft increases, however, bomber crews must shift their attention towards survival, and when they do, bombing success will suffer. By anticipating the level of difficulty, planners can efficiently tailor force packages early in the planning process to enable mission success without significant losses or wasted effort. Therefore, the best way to anticipate the level of difficulty for these forces is by calculating the expected number of Red Air surviving the initial sweep, commonly referred to as leakers. The importance of the target will subse-

quently shape the follow-on strike package or even suggest delaying the strike mission until air superiority is sufficient to facilitate the mission without undue risk.

Making this calculation is extremely simple. Since $R_{\rm att}$ is the percentage of enemy aircraft killed in the sweep, subtracting $R_{\rm att}$ from 1 results in the percentage of aircraft surviving as illustrated below.²

$$R_{\text{survive}} = 1 - R_{\text{att}} \tag{9}$$

All that is needed is to determine the number of Red aircraft initially launched. Since US forces cannot control enemy actions, enemy strength is estimated based on F-15C planned sorties and force ratios. In other words, dividing the number of planned F-15C sorties by the force ratio equals the number of enemy sorties for any point on the graph. Figure 19 displays the curves based on the Red Air attrition regression line. The solid line represents the number of leakers anticipated against an eight ship of F-15Cs, and the dashed line to the left represents projected leakers against a four ship. Initially this may seem counter intuitive, but remember the X-axis represents force ratio while the right side Y-axis represents actual aircraft. Therefore, for any force ratio, doubling the number of F-15C also doubles the number of Red Air fighters. To explain this relationship, three scenarios are instructive. First, if eight Red Air are opposed by four F-15Cs, a 1:2 (0.5) force ratio, we

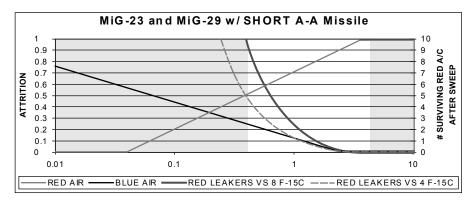


Figure 19. MiG-23/29 surviving Red Aircraft versus F-15C sweep.

would expect about four (3.567 plus or minus error) leakers. If the same eight Red Air are opposed by eight F-15C aircraft, a 1:1 (1.0) force ratio, we would expect about two (2.336 plus or minus error) leakers. Finally, if only four Red Air confront eight F-15Cs, a 2:1 (2.0) force ratio, the result is less than one leaker (0.552 plus or minus error).

Again, these predictions are intuitive, but by quantifying the trend, operational decisions about risk, pacing, force composition, and priority become better defined. Table 1 compares the relevant numbers for each of the three scenarios. The disproportionate difference between the third scenario and the first two clearly emphasizes the advantage of increasing the force ratio.

Force Ratio	Expected F-15C Attrition	Expected F-15C Losses	Expected Red Attrition	Expected Red Losses	Kill Ratio	Red Leakers
4:8 (0.5)	21.8%	0.872	55.4%	4.432	5.1:1	3.567
8:8 (1.0)	12.3%	0.984	70.8%	5.664	5.8:1	2.336
8:4 (2.0)	2.8%	0.224	86.2%	3.448	15.4:1	0.552

Table 1. MiG-23/29 campaign plan analysis data.

Unfortunately, it is impossible to predict the amount of enemy resistance on each mission. Understanding when risks outweigh the rewards, however, can help the commander predetermine specific force ratios to match the acceptable levels of risk (ALR) for each mission. Armed with specific guidance, mission commanders would have better fidelity on when to push to the target, when to proceed with the sweep but call off the strike package, and when to abort the entire mission against unexpected enemy resistance. Thus, the forces could be better prepared to execute in accordance with the commander's intent.

Combining these results also helps to build a more comprehensive picture to educate a commander's perception about an impending war. To explain the application more concretely, an arbitrary force of 100 F-15Cs will provide the backdrop. The following graphs utilize the regression models calculated in appendix B1 to estimate the attrition for each side. As discussed in chapter 1, these calculations use deterministic processing with all of its inherent limitations and pitfalls. Actual results

would vary for each mission and could potentially have significant effects on the viability of the model. Their utility for augmenting a commander's visualization of combat effects, however, outweighs the inevitable inaccuracy of the predictions. As long as the lines remain a planning tool and not a blind prediction of results, they can help shape plans and suggest decision points that would remain ambiguous without the analysis.

Assuming both sides can develop identical UTE rates and on-station times, a direct comparison of aircraft numbers is initially useful as a measure of mass. The following graphs assume a 2.0 UTE rate with one-hour mission (vulnerability) period for each combat iteration unless otherwise noted. The model also assumes aircraft will launch in even numbers. This is typical of Western tactics, but it may not represent every enemy course of action. Additionally, each mission results in a combat engagement and does not account for any effects of OCA-strike missions targeting enemy airfields and supply lines.

Given those assumptions, three outcomes seem probable. First, against an enemy with less than 100 MiG-23 and MiG-29 aircraft, decisive air superiority is a distinct possibility. As noted in figure 20, kill ratios likely would start around 6:1, with the ratio increasing as the enemy's forces are rapidly de-

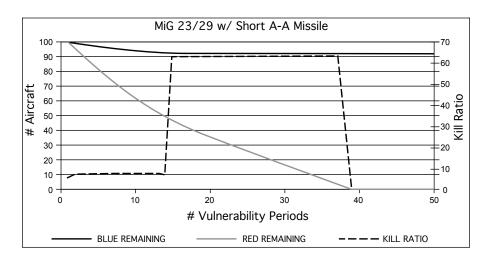


Figure 20. MiG-23/29 short A-A missile 100 versus 100 kill ratio.

stroyed. The changing number of available sorties at the 2.0 UTE rate causes the fluctuating kill ratio. Mission 14 exhibits a dramatic jump in the kill ratio. Once Red Air has less than 48 aircraft available, the aircraft generated per mission drops from four to two. The resulting shift in force ratio produces the sharp change in kill ratio.³ An enemy surge or switch to three-ship tactics could potentially avert this problem temporarily, but the results would remain similar. Figure 21 also indicates that fewer than two enemy aircraft should survive the initial sweep, so follow-on strike packages would find less resistance en route to their targets. Additionally, after mission 15, only occasional enemy resistance is probable. Even without a successful bombing campaign, gaining air superiority in this scenario would be rapid and complete, whether the enemy chose complete destruction or ceased aerial opposition. Assuming a maximum enemy effort, the enemy would run out of aircraft in 38 missions at the cost of approximately eight F-15Cs.

The second option includes an enemy with more than 100 aircraft and fewer than 500 aircraft. In this regime, initial combat would probably be messy with about one F-15C falling per sweep. Three hundred enemy aircraft provide a snapshot at a potential conflict within this region. The expected kill ratio of

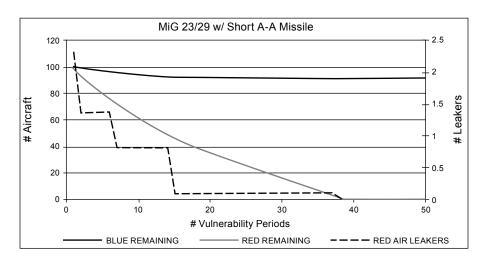


Figure 21. MiG-23/29 short A-A missile 100 versus 100 leakers.

approximately 5:1 displayed in figure 22 would hold for approximately 40 missions. While expected enemy losses outstrip friendly losses and eventually would result in a Blue numerical advantage, the resulting losses of F-15Cs would prove significant. Additionally, as numbers fall, the peak kill ratio would only reach approximately 15:1 after the 44th mission.

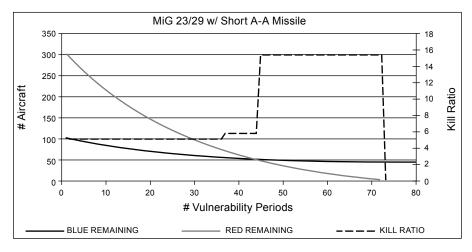


Figure 22. MiG-23/29 short A-A missile 100 versus 300 kill ratio.

Expected losses of 52 F-15Cs in 73 missions could prove catastrophic for American morale. Furthermore, if the combat progressed at a full pace, only three days would elapse from start to finish. This would offer virtually no time for reinforcements, without a sanctuary or cease-fire. Finally, figure 23 explains the limitations on air superiority during the early phases of the war. Leakers would only drop below four on the 30th mission and below two after 36 iterations. This could delay the follow-on bombing effort, especially if the number of available aircraft is limited or vulnerable to attack. More significantly, those follow-on missions could only proceed in safety after the majority of F-15C losses had already taken place. As a result, the strategic flexibility for supporting future combat operations could also decrease.

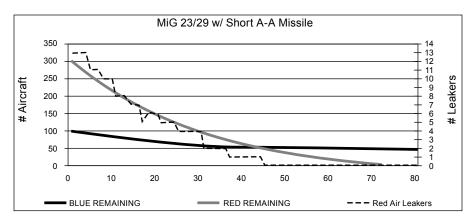


Figure 23. MiG-23/29 short A-A missile 100 versus 300 leakers.

Finally, the third scenario with more than 500 enemy aircraft indicates a region of potential defeat without changes in technology or tactics. Figure 24 depicts the mean results of 100 F-15Cs against an armada of 600 MiG-23/29 type fighters. Consistently outnumbered, the F-15Cs would face a swarm of other lesser aircraft to rely solely on mass to offset the F-15C's technological advantage. In approximately 80 missions, the enemy

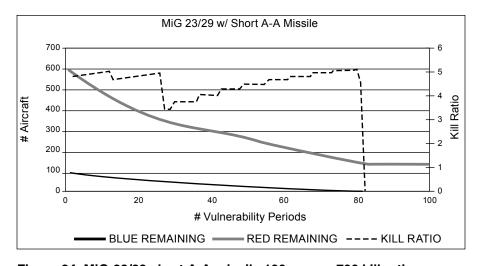


Figure 24. MiG-23/29 short A-A missile 100 versus 700 kill ratio.

would own air superiority with all 100 F-15Cs destroyed and about 140 enemy fighters remaining. Additionally, few if any Blue Air bombing missions are possible in such a scenario because of the overwhelming numbers of enemy aircraft still defending the area.

Admittedly, this is a glaring oversimplification of an operational scenario, but it is necessary to highlight the basic math. This scenario also provides the opportunity to discuss the ability of other aircraft to augment the F-15C forces during the sweep. Current multirole fighters from both the Air Force and Navy can aid in the sweep mission if necessary. Red Flag tactics often use an additional four ships of fighters for just this purpose. Unfortunately, due to airspace congestion, limited tactical integration, or technical limitations, the other conventional sweep aircraft account for an overall kill ratio of 2.1:1 while the F-15C accounts for 5.8:1 against the MiG-23/29 combination with the short air-to-air missile (fig. 25). At the same time, F-15C attrition averaged 10.1 percent, while other aircraft accounted for only 4.2 percent. Based on the author's experience at Red Flag and the data, F-15Cs do the majority of the high-threat work and the augmenting aircraft cover other areas with less threat. This study's limited focus and data fidelity also inhibited a positive correlation between augmentation and

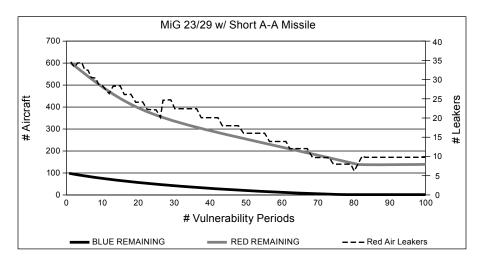


Figure 25. MiG-23/29 short A-A missile 100 versus 700 leakers.

changes in kill ratio. Future studies are therefore needed to reach any conclusions about the effectiveness of this tactic.

Finally, depending on the scenario, modifying the standard 24-hour operations pattern could prove helpful, especially when force ratios are close to the transition from the middle ground of attrition to decisive air superiority. For example, if forces on both sides were approximately equal, redistribution of sorties to favor specific missions could improve overall effects by temporarily spiking the kill ratio and providing better protection of bomber assets. This method could facilitate earlier bombing missions by massing sweep assets to defend and overwhelm the defense's capabilities. Similarly, by temporarily increasing the UTE rates, commonly referred to as a surge, the aircraft sorties could boost the force ratio into the decisive air superiority regime, but not without risk. If the desired enemy attrition rates do not materialize, the gamble could prove counterproductive. Once aircraft cross the threshold of declining maintenance standards, available sorties will decrease despite planned efforts to increase the UTE rate. The result could be a chaotic operational effort instead of a measured plan for action.

Effects of New Enemy Technology

Some technological innovations can significantly alter the balance of power between two military forces. Changing the scenario from the MiG-23/29 to the SU-27 represents more than a new tactical problem. The added capability of the new aircraft and missile also makes the operational problem of defeating the better-equipped enemy more challenging, especially if the goal is decisive air superiority. Figure 26 initially looks similar to the previously explained figure 16, but closer inspection reveals a few differences. First, the 95 percent confidence intervals are farther apart. This is likely due to the smaller data set rather than any correlation with the new technology. Second, the data set contains less diversity in the force ratio than the previous data set. Therefore, extrapolation of the data begins earlier than in the previous example. Fortunately, the data trends closely mirror the earlier results, so they appear reasonable.

Calculating the expected kill ratio for the SU-27 begins to highlight the added difficulty of this scenario. Figure 27 indi-

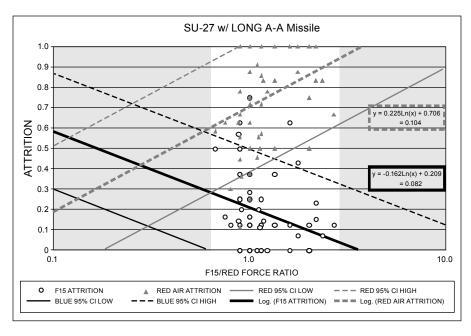


Figure 26. SU-27 long missile attrition lines log scale.

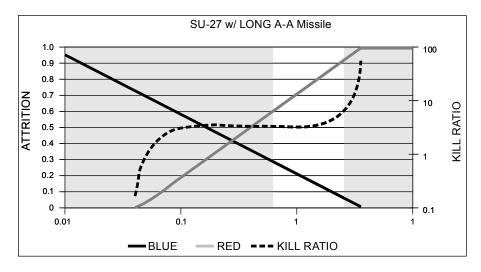


Figure 27. SU-27 long kill ratio.

cates that the three regions of air superiority discussed in the MiG-23/29 scenario are still present, but their values have changed. The first region, decisive air superiority, does not begin until approximately 2.0 and stretches toward peak attrition at a force ratio of 3.5. The second region, numeric attrition, is obviously wider, ranging from 0.1 to 2.0. More significant is the average kill ratio in the center plateau of only 3.5:1. Finally, the third region, desperate measures, remains virtually identical to the lesser threat. The reason for the shift is more obvious by plotting both combinations together in figure 28. Red Air attrition shifted hardly at all between the two cases. As a result, the number of leakers expected for any force ratio remains identical to those predicted in figure 19. Based on data and experience at Red Flag, it is difficult to draw specific inferences from this lack of change, but there are two likely options. First, it could simply be a matter of chance, but given the quantity of data, it is unlikely that both the slope and intercept would remain the same. Second, none of the relevant factors relating to the Red Air attrition changed; therefore, a constant attrition model is expected. The aircraft simulating both threat systems remained identical. Similarly, the replicated defensive tactics

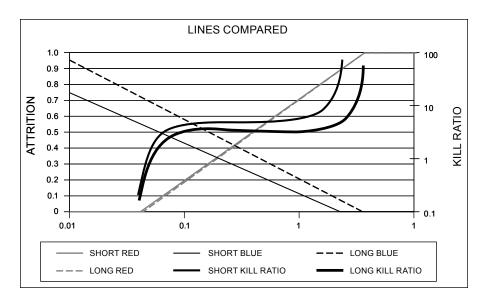


Figure 28. Combined attrition and kill ratio.

for both aircraft and missile combinations are virtually identical. In conclusion, the capabilities and tactics of the F-15C remained constant. Therefore, it is possible that target aircraft attrition is driven by the defensive systems' interaction with enemy offensive weapons.

As expected, F-15C attrition increased against the more capable SU-27 and the long-range missile by approximately 9 percent, with a slight increase in the slope of the line. As noted earlier, the slope is somewhat questionable due to the narrow range of the data. The number, however, correlates closely to the final weapons T-test indicating an overall difference in attrition between the two groups of 7.7 percent (p=0.002) in appendix A12. The increase in F-15C attrition causes the resulting drop in the kill ratio. The most significant change, however, is the F-15C zero attrition point shift to the right. That move requires a significant increase in the forces required to approach increasing returns on attrition as indicated in figure 24. Instead of achieving an expected kill ratio of 15.4:1 with a 2.0 force ratio, the SU-27 threat would likely yield a kill ratio of only 4.5:1. Only by expanding the force ratio to 3:1 would the F-15C re-enter the region of decisive air superiority (table 2). As a result, Blue forces face a much higher chance of fighting a lethal war of attrition instead of the decisive battle for air superiority that America and the USAF have grown accustomed to since Operation Desert Storm.

Table 2. SU-27 long campaign plan analysis data.

Force Ratio	Expected F-15C Attrition	Expected F-15C Losses	Expected Red Attrition	Expected Red Losses	Kill Ratio	Red Leakers
4:8 (0.5)	32.1%	1.284	55.0%	4.4	3.4:1	3.600
8:8 (1.0)	20.9%	1.672	70.6%	5.648	3.4:1	2.352
8:4 (2.0)	9.7%	0.776	86.2%	3.448	4.5:1	0.552
12:4 (3.0)	3.1%	0.248	95.3%	3.812	10.3:1	0.188

As a result, the operational decisions possible in the MiG scenario become much more restrictive against the better-equipped SU-27. Given the same assumptions and the same

100 F-15C aircraft, the three regions of operational outcomes are still possible, but everything shifts away from the F-15C's advantage. Decisive air superiority is still possible, but only against 50 or fewer SU-27s. The second option also only extends to around 340 enemy aircraft before restrictive losses become a real possibility.

The significant difference between the two scenarios helps to clarify how an apparently small change in weapons technology can affect operational outcomes. The flexibility to request additional forces, however, is only available based on long-term force structure decisions.

Notes

- 1. Lloyd and Naval War College, Fundamentals of Force Planning, 15–16.
- 2. Ball, Fundamentals of Aircraft Combat Survivability Analysis and Design, 22.
- 3. Maintenance Metrics U.S. Air Force, 35. The daily UTE rate is calculated by dividing the number of sorties required by the number of available aircraft. To calculate the number of aircraft required given sorties and the UTE rate, divide the sorties required by the UTE. As an example, to keep four aircraft on station for one-hour vulnerability periods 24 hours a day requires 96 sorties. A 2.0 UTE rate therefore requires 48 aircraft.
- 4. The F-15C accounted for 1,420 sorties with 143 losses and 829 kills during the ingress portion. The other conventional OCA-sweep players totaled 166 sorties with seven losses and 15 kills.

Chapter 4

Strategic Implications

At the strategic level of war, governments make long-term decisions about force structure and what technologies to procure. On the grand scale, national military force structure is based on the allocation of limited resources and the relationship "among ends, ways, and risk." Clausewitz believed in the power of quality, but he felt the surest method of ensuring success on the battlefield is by striving to "put the largest possible army into the field."² Today's defense reality, however, requires a balance between both fiscal responsibility and a constant capability for victory. Colin Gray eloquently framed this dilemma with his question, "How should one resolve disputes between those who urge defense preparation according to threat-based military analysis of what the polity allegedly needs to be secure and those who assert that the polity can only afford to spend so much on defense functions?"3 Striking the correct balance between essential and desired capabilities is vital for enabling national goals without waste.

Possibly the most important step in the process is defining the military's mission within the national security strategy. Robert Art suggests four categories of military force including defense, deterrence, compellence, and swaggering.⁴ Because these functions are independent and overlapping, he concludes, only great nations have the potential to "develop military forces that can serve more than two functions at once. Even then, this is achievable only vis-à-vis smaller powers, not vis-à-vis the other great ones."5 Understanding the subtle differences between each of the four is essential. Defense requires forces capable of repelling an attack on the nation and minimizing the effects of enemy action.⁶ Deterrence is similar to defense because its focus is passive but requires an "institutionalized perception" within the enemy state that military action cannot resolve the conflict.⁷ Compellence, by contrast, is necessarily offensive in character. It seeks to induce enemy action by the threat or actual use of military force.8 Finally, Art's term swagger consists of the egoistic display of military prowess through exercises, demonstrations, or technological expertise. This last category is similar in effect to compellence, but, like defense, it focuses inward by attempting to boost national pride or government legitimacy. Or some control of the control of

The role of air superiority in each of these realms varies and therefore necessitates a different force structure to enable national objectives. A purely defensive force structure is relatively simple to construct and justify. Using traditional "threat/vulnerability" approaches to defense planning; strategists can simply analyze enemy capabilities and American susceptibility to determine the necessary force structure. Since victory is the only requirement and minimizing the effects is a goal, forces only need to be large enough to prevent decisive enemy action. Therefore, forces sufficient to win within the middle plateau of numerical attrition can assure defense with the minimum economic cost.

While pure defense may appeal to a traditional isolationist, it is inconsistent with America's current role as the global enforcer. Since both deterrence and compellence rely on enemy perceptions for effectiveness, defining force structures becomes more ambiguous. Daniel Byman and Mathew Waxman argue that "will and credibility matter as much as, and often more than, the overall balance of forces."12 The threshold for success between deterrence and compellence, however, is different due to sunk costs and the need to preserve political face. Since deterrence seeks to avert enemy action before it takes place, adversaries will typically apply a lower threshold for acquiescence because inactive compliance is less attributable to outside influences. 13 Once unacceptable action takes place and compellence becomes necessary, adversaries may calculate the value of their reputation outweighs the risk of confrontation.¹⁴ Consequently, as measured threats of force proceed from deterrence to compellence, credibility also needs to increase and may necessitate the use of force. Therefore, a more proactive foreign policy necessitates a more robust military. Presenting sufficient forces to win within the table of numeric attrition could augment America's deterrent credibility to avert military confrontation, but these forces may not inhibit action by determined foes. If compellent war becomes necessary, the disproportional advantage offered by decisive air superiority will help

to ensure victory with less cost in lives and equipment. Employing forces within this realm also minimizes the time required for victory, which is essential in maintaining public support enabling the political will for action. The costs of maintaining a force large enough to accomplish this, however, are growing rapidly. The combined expense of the ongoing global war on terror with the simultaneous increase in the strength of foreign militaries may make maintaining an undisputed compellence force untenable.

Finally, Art's fourth category, swagger, suggests an entirely different approach to military force structure focused on broad political power instead of pure military clout. From an economic perspective, fielding advanced military hardware can provide significant advantages in the international arena. Mechanisms like embargos, licensing rights, and direct military sales of advanced technology provide the required political capital to influence friends and foes without the threat of violence. 15 Additionally, with swagger's focus on the tool rather than its utility, it is usually enough to field the system only with sufficient numbers to meet the credibility threshold. With this in mind, swaggering offers status and respect "on the cheap." 16 The critical element of this methodology provides the foresight, similar to Pres. Franklin D. Roosevelt's, that enables increased production early enough to influence the air war and avoids a repeat of the blind reverence to technology that hobbled the Luftwaffe in World War II.

This model, besides illustrating the role of force size, highlights the role of technology and stresses the importance acquisition priorities can have on national security. Given the significant shift between the two scenarios shown in figure 29, it is apparent how a longer-range air-to-air missile can affect the overall balance of strength between the two sides. The most important driver for advantage is the point for each side where its attrition approaches zero. This point consistently drives the disproportionate kill ratios on both ends of the graph. The side that can fight closest to this point has a distinct advantage. Comparing the existing kill-ratio curve with a modeled curve for a proposed system makes possible a direct comparison of required numbers.

This added fidelity suggests increasing numbers of current aircraft rather than producing a new system as the most costeffective strategy. Conversely, if the threat is significant or the new technology is revolutionary and sufficiently affordable, the curves may indicate a compelling reason to transform the force. In either case, this model can help commanders augment their decisions in an intuitive manner. Additionally, the shift of the F-15C attrition line suggests there may be a predictable linkage to focus future efforts. If the interaction between Blue attrition and Red offensive systems exists, logic suggests a similar relationship between Blue defensive systems and Blue attrition exists. Therefore, recent US Air Force emphasis on stealth technology may be logically well founded. The protection stealth provides from attack should negate the advantage of enemy offensive weapons and would therefore enable disproportionate victory with fewer aircraft by shifting the Blue minimum attrition point further left. Further study with testing data is needed to verify the extent of the effect relative to the increased cost.

Recommendations

While potentially interesting, this study is far from complete. The OCA-sweep mission area is an important enabler of airpower, but it is not an end unto itself. Modern surface-to-air threats suggest the need for a similar study of the OCA-SEAD mission area. Similarly, charting success rates for the aircraft putting bombs on target is also essential to building a complete picture of the relationship between mass and technology. To accomplish this, however, each mission area database needs synchronizing to facilitate coherent analysis. To facilitate such an analysis, Arcata data collection should be restructured into the following three blocks. The first of the three, initial sweep, includes all results for all players up to and including the "loss" of the last original Red Air player. The second, ingress, embraces all results after the initial sweep until final weapons release. This includes all OCA-sweep, OCA-SEAD, and Red Air missions until the last striker weapons release. The third, egress, includes all data after weapons release until flights terminate tactical maneuvering. This is not a significant change from most of the current collection, but it does include attempts to make a better split for the results of the initial sweep from an analytical standpoint.

Enhancing Red Flag's fidelity will also make future analyses more productive. Harnessing NACTS-tracking data to produce real-time computer-generated air-to-air, air-to-ground, and ground-to-air missile fly-out models minimizes the training limitations of the current shot kill mechanism while maximizing data accuracy. Adding new airspace to expand the opportunities for maneuver seems also beneficial. Current initiatives like Red Flag-Alaska are a step in the right direction as long as the quality and quantity of threat replication remains high at the new location. Additionally, varying the numbers of Red Air for each mission may be more productive for altering the threat level than the current system of changing subtle tactical variables. This also allows participants to learn lessons about how variation in enemy numerical strength affects mission viability. These lessons could make the critical difference in averting unneeded combat attrition in future wars.

Finally, the US Air Force must develop a set of operational planning aids to augment current methods. By harnessing DOD's war-gaming infrastructure, a series of charts and graphs similar to those presented in chapter 3 are feasible for virtually any potential scenario. Using stochastic methods, individual scenarios would retain the natural variability of combat, while indicating trends. Additionally, Red Flag and test missions would serve as a verification tool to validate the reasonableness of the overall prediction. Once complete, they would function in the operational level air superiority campaign similar to an energy-maneuverability diagram in tactical level aerial dogfight. By suggesting areas of advantage and vulnerability in relation to the opponent, they would clarify a commander's understanding of the impending battle and help to shape the strategy through understanding.

Notes

- 1. Lloyd and Castle, Strategy and Force Planning, 5.
- 2. Clausewitz, On War, 195.
- 3. Gray, Modern Strategy, 33.
- 4. Art, "The Four Functions of Force," 153.
- 5. Ibid., 154.

STRATEGIC IMPLICATIONS

- 6. Ibid.
- 7. Freedman, Deterrence, 42.
- 8. Schelling, Arms and Influence, 79-80.
- 9. Art, "Four Functions of Force," 157.
- 10. Ibid., 157-58.
- 11. Lloyd and Castle, Strategy and Force Planning, 27.
- 12. Byman and Waxman, Dynamics of Coercion, 18.
- 13. Schelling, Arms and Influence, 82.
- 14. Jervis, System Effects, 387.
- 15. Baldwin, Economic Statecraft, 41-42.
- 16. Art, "Four Functions of Force," 158.

Chapter 5

Conclusion

This study proposes a model for understanding the relationship between technology, mass, and attrition in aerial warfare that is useful for shaping operational and strategic force decision processes. The F-15C's OCA-sweep mission within Red Flag highlights one potentially useful relationship that has value as a model for air superiority. The change of attrition as force ratios increase is simple to understand and logically feasible. Additionally, the regression line helps to provide a window on the expected variance within a specific scenario. Unfortunately, the character of Red Flag as a tactical exercise and not a test introduces excessive variation into an already chaotic environment. Future analyses should harness the power of computer modeling to minimize the number of variables and produce better representations for operational use. Once complete and validated in such exercises as Red Flag, these diagrams would serve as an operational planning tool. Connecting statistical relationships to the operational art of campaign planning helps to ensure success in campaigns against capable foes.

Most significant, however, this study helps to clarify how kill ratio varies in relation to force ratio and technology. The wide middle area of stability, identified as numerical attrition, is consistent with the traditional notion that kill ratio is largely set by training and technology. It is also consistent with most of the historical record, including the early campaigns of World War II, that suggested little change in kill ratio with nominal changes in the relative mass of forces. This is also the reason technology often produced the only observable change in kill ratio in closely matched forces. From the Fokker scourge of World War I to the need for F-86s during the Korean War, technology altered the balance between victor and vanquished by displacing the attrition lines and thus the kill ratio between the two forces.

The rapid change in attrition rate at either end of the graph caused by changes in force ratios also has great explanatory value in other cases. By indicating regions where an increase in mass dictates a lop-sided victory, the concept accounts for several notable cases in the historical record. Primary among these cases is the previously discussed rapid change in kill ratio during the aerial assault on Germany. Doubling the force ratio during mid-1944 resulted in a sixfold increase in kill ratio in only three months. While the increase in force ratio is not the sole reason for the change, the correlation is strikingly similar to the Red Flag data. The uneven air supremacy enjoyed in Operations Desert Storm and Allied Force also closely mirrors the decisive air superiority regime predicted by the model. In both cases, the US Air Force fought within the region of decisive air superiority due to its overwhelming mass and technology. This advantage may prove transient, however, because, similar to Wall Street, "past performance does not predict future returns." Adversaries will attempt to balance America's advantage with their own unique combination of mass and technology.

Before the next major war begins, strategic decisions about military force structure will shape the feasibility of operational plans and preordain the costs in both the dollars and lives required for victory. The F-22 is already superseding the F-15C with increased capability and reduced numbers. The joint strike fighter will similarly supplant the F-15E, F-16, and A-10 in the next decade. At first glance, this change should guarantee aerial dominance in the future through technology. Unfortunately, the disproportionate advantage afforded by stealth and fifthgeneration technology remains too expensive and complex to field in large numbers. These shrinking inventories of high-technology aircraft will likely result in a conflict where America will fight outnumbered and completely reliant on technology to maintain a preponderance of strength.

The danger, however, is in dropping forces too low without moderating expectations. While these new systems may have the ability to strike the same number of targets as their more numerous predecessors, their dwindling numbers can cause other problems. Smaller numbers amplify the effects of fog and chance. With the study's regression calculations, outliers defied the averages: missions where bad days conspired with possibility to produce unexpected losses. Over thousands of sorties, these anomalies did not have a significant impact on the outcome. As the numbers decrease, however, single events grow

in meaning. The recent accidental crash of a B-2 is a perfect example. The loss of a single, irreplaceable aircraft will have long-term effects on strategic options, especially when victory requires maximum effort.

Imagine the effect upon the inventory the first time an enemy reveals the capability to detect, target, and kill American stealth platforms with lethal regularity. If timed appropriately, the quick succession of losses could prove more damaging than Pearl Harbor by significantly reducing the number of available aircraft. Foreign aviation technology is developing at a rapid pace. Soon another military might balance the overwhelming advantage of the US Air Force. The essential problem lies in identifying the challenge before a confrontation erupts. The strategic insight provided by this model could help to identify the limitations of the force early enough to enable a timely correction. In some cases, a simple transition from an overt policy of compellence to a more conciliatory swaggering or defensive posture may save limited funds for other necessities. In other more dire situations, early recognition will build the requisite time for either producing additional aircraft or trading up for more technology.

Silver bullets seldom manifest themselves in warfare. When they do appear, their lop-sided effectiveness is usually fleeting as the enemy adapts to the new tactics or technology. America's aerial dominance, enabled by stealth and precision, is a transitory advantage with a finite duration. The inevitable rebalancing of military capability will force a return to inventory comparisons and small incremental changes in technologies, countertactics, and organizations. America can minimize its risk of falling victim to hubris by anticipating the impending enemy changes and planning for them. By avoiding the pitfall of assuming future disproportionate advantages and planning for parity, the Air Force can avoid defeat in the next war. Understanding the relationship between mass and technology is the best way to offset the impending rebalance of global military force. By returning to brutal honesty and strategic introspection, the Air Force can identify its weaknesses and be ready to win the next war.

Appendix A

Data Set Variance

A1. Year Attrition Analysis of Variance (ANOVA) 2001–2005 Author's original work using Statistical Program for the Social Sciences (SPSS) 12.0.1

Descriptives

		N	Mean	Std. Deviation	Std. Error	95% Col Interval f		Minimum	Maximum
						Lower Bound	Upper Bound		
F15_ING_ ATT	2001	72	.177083	.1409508	.0166112	.143962	.210205	.0000	.6250
	2002	92	.133742	.1578904	.0164612	.101043	.166440	.0000	.6250
	2003	47	.125532	.1671652	.0243835	.076450	.174613	.0000	.7500
	2004	54	.089267	.1383443	.0188263	.051506	.127027	.0000	.7500
	2005	34	.105252	.1443346	.0247532	.054891	.155613	.0000	.5000
	Total	299	.131616	.1525829	.0088241	.114251	.148981	.0000	.7500
OCA_ING_ ATT	2001	74	.154636	.1192056	.0138574	.127018	.182254	.0000	.5000
	2002	93	.123534	.1383595	.0143472	.095039	.152028	.0000	.5000
	2003	47	.123759	.1673870	.0244159	.074612	.172906	.0000	.7500
	2004	59	.091821	.1363615	.0177528	.056285	.127357	.0000	.7500
	2005	34	.105252	.1443346	.0247532	.054891	.155613	.0000	.5000
	Total	307	.122946	.1399754	.0079888	.107226	.138666	.0000	.7500
RED_ING_ ATT	2001	74	.569337	.2307686	.0268263	.515873	.622802	.0000	1.0000
	2002	93	.748192	.1909472	.0198003	.708867	.787517	.2500	1.0000
	2003	47	.770652	.1967436	.0286980	.712886	.828418	.3750	1.0000
	2004	59	.784759	.2209083	.0287598	.727190	.842328	.0000	1.0000
	2005	34	.766667	.1957723	.0335747	.698358	.834975	.5000	1.1250
	Total	307	.717593	.2236921	.0127668	.692471	.742714	.0000	1.1250

APPENDIX A

Test of Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
F15_ING_ATT	.511	4	294	.728
OCA_ING_ATT	.596	4	302	.666
RED_ING_ATT	.562	4	302	.690

ANOVA

		Sum of Squares	Df	Mean Square	F	Sig.
F15_ING_ ATT	Between Groups	.271	4	.068	2.993	.019
	Within Groups	6.666	294	.023		
	Total	6.938	298			
OCA_ING_ ATT	Between Groups	.142	4	.036	1.834	.122
	Within Groups	5.853	302	.019		
	Total	5.995	306			
RED_ING_ ATT	Between Groups	2.194	4	.548	12.627	.000
	Within Groups	13.118	302	.043		
	Total	15.312	306			

Post-Hoc Tests

Multiple Comparisons

Tukey honestly significant difference (HSD) test

Dependent Variable	(I) Year	(J) Year	Mean Difference (I-J)	Std. Error	Sig.		nfidence rval
						Lower Bound	Upper Bound
F15_ING_ ATT	2001	2002	.0433418	.0236938	.359	021692	.108376
		2003	.0515514	.0282378	.361	025955	.129058
		2004	.0878166(*)	.0271078	.012	.013412	.162222
		2005	.0718312	.0313343	.150	014175	.157837
	2002	2001	0433418	.0236938	.359	108376	.021692
		2003	.0082096	.0269983	.998	065895	.082314
		2004	.0444748	.0258142	.421	026379	.115329
		2005	.0284894	.0302221	.880	054464	.111443
	2003	2001	0515514	.0282378	.361	129058	.025955
		2002	0082096	.0269983	.998	082314	.065895
		2004	.0362652	.0300391	.747	046186	.118716
		2005	.0202798	.0339021	.975	072774	.113334
	2004	2001	0878166(*)	.0271078	.012	162222	013412
		2002	0444748	.0258142	.421	115329	.026379
		2003	0362652	.0300391	.747	118716	.046186
		2005	0159854	.0329669	.989	106472	.074501
	2005	2001	0718312	.0313343	.150	157837	.014175
		2002	0284894	.0302221	.880	111443	.054464
		2003	0202798	.0339021	.975	113334	.072774
		2004	.0159854	.0329669	.989	074501	.106472
OCA_ING_ ATT	2001	2002	.0311024	.0216869	.606	028414	.090619
		2003	.0308773	.0259672	.758	040385	.102140
		2004	.0628153	.0242986	.076	003868	.129499
		2005	.0493840	.0288439	.428	029773	.128541
	2002	2001	0311024	.0216869	.606	090619	.028414
		2003	0002252	.0249156	1.000	068602	.068151
		2004	.0317129	.0231714	.648	031877	.095303
		2005	.0182816	.0279009	.966	058288	.094851
	2003	2001	0308773	.0259672	.758	102140	.040385
		2002	.0002252	.0249156	1.000	068151	.068602
		2004	.0319380	.0272192	.767	042760	.106637

Post-Hoc Tests (continued)

Dependent Variable	(I) Year	(J) Year	Mean Difference (I-J)	Std. Error	Sig.		nfidence rval
						Lower Bound	Upper Bound
		2005	.0185068	.0313438	.976	067511	.104524
	2004	2001	0628153	.0242986	.076	129499	.003868
		2002	0317129	.0231714	.648	095303	.031877
		2003	0319380	.0272192	.767	106637	.042760
		2005	0134313	.0299760	.992	095695	.068833
	2005	2001	0493840	.0288439	.428	128541	.029773
		2002	0182816	.0279009	.966	094851	.058288
		2003	0185068	.0313438	.976	104524	.067511
		2004	.0134313	.0299760	.992	068833	.095695
RED_ING_ ATT	2001	2002	1788551(*)	.0324658	.000	267952	089758
		2003	2013145(*)	.0388735	.000	307996	094633
		2004	2154219(*)	.0363756	.000	315249	115595
		2005	1973294(*)	.0431800	.000	315830	078829
	2002	2001	.1788551(*)	.0324658	.000	.089758	.267952
		2003	0224594	.0372992	.975	124821	.079902
		2004	0365668	.0346881	.830	131762	.058629
		2005	0184743	.0417683	.992	133100	.096152
	2003	2001	.2013145(*)	.0388735	.000	.094633	.307996
		2002	.0224594	.0372992	.975	079902	.124821
		2004	0141074	.0407478	.997	125933	.097718
		2005	.0039851	.0469224	1.000	124785	.132756
	2004	2001	.2154219(*)	.0363756	.000	.115595	.315249
		2002	.0365668	.0346881	.830	058629	.131762
		2003	.0141074	.0407478	.997	097718	.125933
		2005	.0180925	.0448747	.994	105059	.141244
	2005	2001	.1973294(*)	.0431800	.000	.078829	.315830
		2002	.0184743	.0417683	.992	096152	.133100
		2003	0039851	.0469224	1.000	132756	.124785
		2004	0180925	.0448747	.994	141244	.105059

^{*}The mean difference is significant at the .05 level.

Homogeneous Subsets

F15_ING_ATT

Tukey HSD

Year	N	Subset for alpha = .05				
		1	2			
2004	54	.089267				
2005	34	.105252	.105252			
2003	47	.125532	.125532			
2002	92	.133742	.133742			
2001	72		.177083			
Sig.		.548	.103			

Means for groups in homogeneous subsets are displayed.

OCA_ING_ATT

Tukey HSD

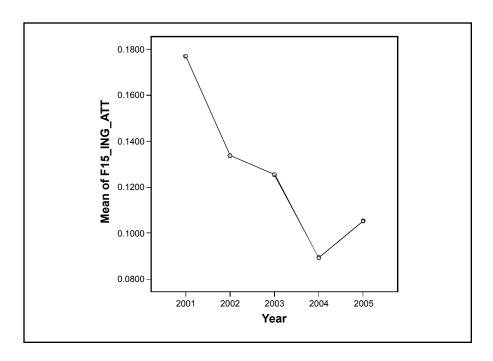
Year	N	Subset for alpha = .05				
		1				
2004	59	.091821				
2005	34	.105252				
2002	93	.123534				
2003	47	.123759				
2001	74	.154636				
Sig.		.131				

Means for groups in homogeneous subsets are displayed.

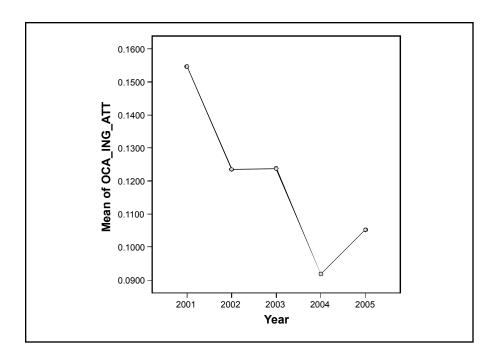
a Uses Harmonic Mean Sample Size = 53.211.

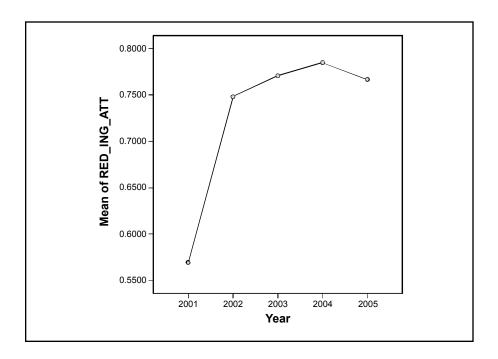
b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

a Uses Harmonic Mean Sample Size = 54.405.


b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

RED_ING_ATT


Tukey HSD


Year	N	Subset for alpha = .05				
		1	2			
2001	74	.569337				
2002	93		.748192			
2005	34		.766667			
2003	47		.770652			
2004	59		.784759			
Sig.		1.000	.891			

Means Plots

Means for groups in homogeneous subsets are displayed. a Uses Harmonic Mean Sample Size = 54.405. b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Year Force Ratio ANOVA 2001-2005

Descriptives

		N	Mean	Std.	Std. Error	95% Co		Mini-	Maxi-
				Deviation		Interval f Lower	or Mean Upper	mum	mum
						Bound	Bound		
F15_	2001	74	.850290	.2106658	.0244894	.801482	.899097	.0000	1.6000
FLOWN_ RATIO	2002	93	1.114696	.3389543	.0351479	1.044889	1.184503	.0000	2.6667
	2003	47	1.597357	.8036187	.1172198	1.361406	1.833309	.5556	4.0000
	2004	59	1.363875	.7199627	.0937312	1.176252	1.551499	.0000	2.8000
	2005	34	1.084886	.3197288	.0548330	.973327	1.196444	.6667	2.0000
	Total	307	1.169442	.5596747	.0319423	1.106588	1.232297	.0000	4.0000
FLOWN_	2001	74	1.044235	.3277100	.0380955	.968311	1.120160	.4444	2.4000
RATIO	2002	93	1.405164	.4664773	.0483714	1.309094	1.501234	.8889	3.5000
	2003	47	1.824308	1.3103846	.1911392	1.439564	2.209051	.5556	6.0000
	2004	59	1.502051	.5958926	.0775786	1.346761	1.657342	.4444	2.8000
	2005	34	1.084886	.3197288	.0548330	.973327	1.196444	.6667	2.0000
	Total	307	1.365483	.7054171	.0402603	1.286261	1.444705	.4444	6.0000
OCA_	2001	72	7.74	1.256	.148	7.44	8.03	4	10
F15_FL	2002	92	8.62	1.518	.158	8.31	8.93	4	12
	2003	47	7.83	.524	.076	7.68	7.98	5	8
	2004	54	9.59	2.904	.395	8.80	10.39	4	14
	2005	34	7.12	1.343	.230	6.65	7.59	4	8
	Total	299	8.29	1.851	.107	8.08	8.50	4	14
OCA_	2001	74	9.08	2.052	.239	8.61	9.56	4	12
TOT_ FTR_FL	2002	93	10.54	1.862	.193	10.15	10.92	4	14
_	2003	47	8.43	1.543	.225	7.97	8.88	5	12
	2004	59	9.46	2.920	.380	8.70	10.22	4	14
	2005	34	7.12	1.343	.230	6.65	7.59	4	8
	Total	307	9.28	2.312	.132	9.02	9.54	4	14
RED_	2001	74	9.04	1.763	.205	8.63	9.45	4	13
TOT_ FTR_FL	2002	93	7.94	1.673	.174	7.59	8.28	3	11
	2003	47	5.89	2.189	.319	5.25	6.54	2	9
	2004	59	6.76	1.775	.231	6.30	7.23	4	10
	2005	34	6.82	1.487	.255	6.30	7.34	4	9
	Total	307	7.54	2.079	.119	7.31	7.77	2	13

Test of Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
F15_FLOWN_RATIO	33.964	4	302	.000
FLOWN_RATIO	20.181	4	302	.000
OCA_F15_FL	41.497	4	294	.000
OCA_TOT_FTR_FL	16.740	4	302	.000
RED_TOT_FTR_FL	5.622	4	302	.000

ANOVA

		Sum of Squares	Df	Mean Square	F	Sig.
F15_FLOWN_ RATIO	Between Groups	18.896	4	4.724	18.539	.000
	Within Groups	76.954	302	.255		
	Total	95.850	306			
FLOWN_RATIO	Between Groups	21.455	4	5.364	12.383	.000
	Within Groups	130.815	302	.433		
	Total	152.270	306			
OCA_F15_FL	Between Groups	180.389	4	45.097	15.768	.000
	Within Groups	840.876	294	2.860		
	Total	1021.265	298			
OCA_TOT_FTR_FL	Between Groups	345.171	4	86.293	20.197	.000
	Within Groups	1290.295	302	4.272		
	Total	1635.466	306			
RED_TOT_FTR_FL	Between Groups	361.663	4	90.416	28.426	.000
	Within Groups	960.579	302	3.181		
	Total	1322.241	306			

Post-Hoc Tests

Multiple Comparisons

Tukey HSD

Dependent Variable	(I) Year	(J) Year	Mean Difference (I-J)	Std. Error	Sig.	95% Col Inte	
						Lower Bound	Upper Bound
F15_	2001	2002	2644065(*)	.0786345	.008	480206	048607
FLOWN_ RATIO		2003	7470677(*)	.0941543	.000	-1.005458	488677
		2004	5135858(*)	.0881042	.000	755373	271799
		2005	2345960	.1045849	.167	521612	.052420
	2002	2001	.2644065(*)	.0786345	.008	.048607	.480206
		2003	4826612(*)	.0903413	.000	730587	234735
		2004	2491793(*)	.0840169	.027	479750	018609
		2005	.0298105	.1011657	.998	247822	.307443
	2003	2001	.7470677(*)	.0941543	.000	.488677	1.005458
		2002	.4826612(*)	.0903413	.000	.234735	.730587
		2004	.2334819	.0986939	.128	037367	.504331
		2005	.5124717(*)	.1136493	.000	.200581	.824363
	2004	2001	.5135858(*)	.0881042	.000	.271799	.755373
		2002	.2491793(*)	.0840169	.027	.018609	.479750
		2003	2334819	.0986939	.128	504331	.037367
		2005	.2789898	.1086897	.079	019291	.577270
	2005	2001	.2345960	.1045849	.167	052420	.521612
		2002	0298105	.1011657	.998	307443	.247822
		2003	5124717(*)	.1136493	.000	824363	200581
		2004	2789898	.1086897	.079	577270	.019291
FLOWN_	2001	2002	3609284(*)	.1025240	.004	642288	079569
RATIO		2003	7800723(*)	.1227588	.000	-1.116963	443182
		2004	4578160(*)	.1148705	.001	773059	142573
		2005	0406503	.1363582	.998	414862	.333562
	2002	2001	.3609284(*)	.1025240	.004	.079569	.642288
		2003	4191439(*)	.1177872	.004	742391	095897
		2004	0968876	.1095416	.902	397506	.203731
		2005	.3202782	.1319002	.111	041700	.682256
	2003	2001	.7800723(*)	.1227588	.000	.443182	1.116963
		2002	.4191439(*)	.1177872	.004	.095897	.742391
		2004	.3222563	.1286775	.092	030877	.675390
		2005	.7394220(*)	.1481763	.000	.332777	1.146067

Post-Hoc Tests (continued)

Dependent Variable	(I) Year	(J) Year	Mean Difference (I-J)	Std. Error	Sig.		nfidence rval
						Lower Bound	Upper Bound
	2004	2001	.4578160(*)	.1148705	.001	.142573	.773059
		2002	.0968876	.1095416	.902	203731	.397506
		2003	3222563	.1286775	.092	675390	.030877
		2005	.4171658(*)	.1417100	.029	.028267	.806065
	2005	2001	.0406503	.1363582	.998	333562	.414862
		2002	3202782	.1319002	.111	682256	.041700
		2003	7394220(*)	.1481763	.000	-1.146067	332777
		2004	4171658(*)	.1417100	.029	806065	028267
OCA_F15_	2001	2002	883(*)	.266	.009	-1.61	15
FL		2003	094	.317	.998	96	.78
		2004	-1.856(*)	.304	.000	-2.69	-1.02
		2005	.618	.352	.401	35	1.58
	2002	2001	.883(*)	.266	.009	.15	1.61
		2003	.790	.303	.072	04	1.62
		2004	973(*)	.290	.008	-1.77	18
		2005	1.502(*)	.339	.000	.57	2.43
	2003	2001	.094	.317	.998	78	.96
		2002	790	.303	.072	-1.62	.04
		2004	-1.763(*)	.337	.000	-2.69	84
		2005	.712	.381	.336	33	1.76
	2004	2001	1.856(*)	.304	.000	1.02	2.69
		2002	.973(*)	.290	.008	.18	1.77
		2003	1.763(*)	.337	.000	.84	2.69
		2005	2.475(*)	.370	.000	1.46	3.49
	2005	2001	618	.352	.401	-1.58	.35
		2002	-1.502(*)	.339	.000	-2.43	57
		2003	712	.381	.336	-1.76	.33
		2004	-2.475(*)	.370	.000	-3.49	-1.46
OCA_	2001	2002	-1.457(*)	.322	.000	-2.34	57
TOT_FTR_ FL		2003	.656	.386	.435	40	1.71
		2004	377	.361	.835	-1.37	.61
		2005	1.963(*)	.428	.000	.79	3.14
	2002	2001	1.457(*)	.322	.000	.57	2.34
		2003	2.112(*)	.370	.000	1.10	3.13

Post-Hoc Tests (continued)

Dependent Variable	(I) Year	(J) Year	Mean Difference (I-J)	Std. Error	Sig.		nfidence erval
						Lower Bound	Upper Bound
		2004	1.080(*)	.344	.016	.14	2.02
		2005	3.420(*)	.414	.000	2.28	4.56
	2003	2001	656	.386	.435	-1.71	.40
		2002	-2.112(*)	.370	.000	-3.13	-1.10
		2004	-1.032	.404	.082	-2.14	.08
		2005	1.308(*)	.465	.042	.03	2.59
	2004	2001	.377	.361	.835	61	1.37
		2002	-1.080(*)	.344	.016	-2.02	14
		2003	1.032	.404	.082	08	2.14
		2005	2.340(*)	.445	.000	1.12	3.56
	2005	2001	-1.963(*)	.428	.000	-3.14	79
		2002	-3.420(*)	.414	.000	-4.56	-2.28
		2003	-1.308(*)	.465	.042	-2.59	03
		2004	-2.340(*)	.445	.000	-3.56	-1.12
RED_	2001	2002	1.105(*)	.278	.001	.34	1.87
TOT_FTR_ FL		2003	3.147(*)	.333	.000	2.23	4.06
I'L		2004	2.278(*)	.311	.000	1.42	3.13
		2005	2.217(*)	.370	.000	1.20	3.23
	2002	2001	-1.105(*)	.278	.001	-1.87	34
		2003	2.042(*)	.319	.000	1.17	2.92
		2004	1.173(*)	.297	.001	.36	1.99
		2005	1.112(*)	.357	.017	.13	2.09
	2003	2001	-3.147(*)	.333	.000	-4.06	-2.23
		2002	-2.042(*)	.319	.000	-2.92	-1.17
		2004	869	.349	.095	-1.83	.09
		2005	930	.402	.143	-2.03	.17
	2004	2001	-2.278(*)	.311	.000	-3.13	-1.42
		2002	-1.173(*)	.297	.001	-1.99	36
		2003	.869	.349	.095	09	1.83
		2005	061	.384	1.000	-1.11	.99
	2005	2001	-2.217(*)	.370	.000	-3.23	-1.20
		2002	-1.112(*)	.357	.017	-2.09	13
		2003	.930	.402	.143	17	2.03
		2004	.061	.384	1.000	99	1.11

^{*} The mean difference is significant at the .05 level.

Homogeneous Subsets

F15_FLOWN_RATIO

Tukey HSD

Year	N	Subset for alpha = .05					
		1	2	3			
2001	74	.850290					
2005	34	1.084886					
2002	93	1.114696	1.114696				
2004	59		1.363875	1.363875			
2003	47			1.597357			
Sig.		.052	.078	.115			

Means for groups in homogeneous subsets are displayed.

FLOWN_RATIO

Tukey HSD

Year	N	Subset for alpha = .05					
		1 2		3	4		
2001	74	1.044235					
2005	34	1.084886	1.084886				
2002	93		1.405164	1.405164			
2004	59			1.502051	1.502051		
2003	47				1.824308		
Sig.		.998	.085	.940	.082		

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 54.405.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

a Uses Harmonic Mean Sample Size = 54.405.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

OCA_F15_FL

Tukey HSD

Year	N	Subset for alpha = .05						
		1	2	3				
2005	34	7.12						
2001	72	7.74	7.74					
2003	47	7.83	7.83					
2002	92		8.62					
2004	54			9.59				
Sig.		.193	.057	1.000				

Means for groups in homogeneous subsets are displayed.

OCA_TOT_FTR_FL

Tukey HSD

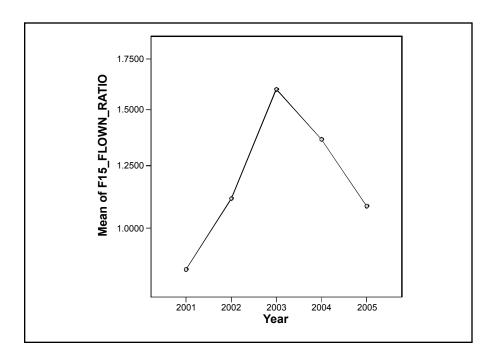
Year	N	Subset for alpha = .05					
		1	2	3			
2005	34	7.12					
2003	47		8.43				
2001	74		9.08				
2004	59		9.46	9.46			
2002	93			10.54			
Sig.		1.000	.072	.053			

Means for groups in homogeneous subsets are displayed.

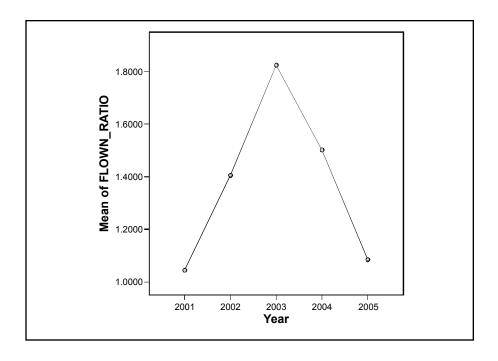
a Uses Harmonic Mean Sample Size = 53.211.

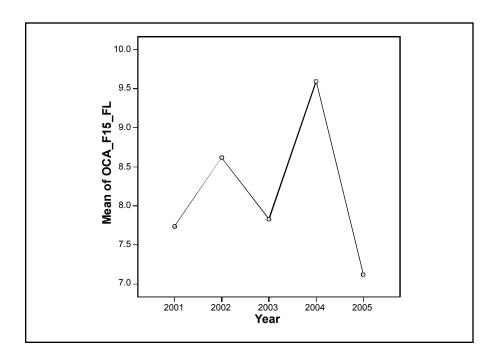
b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

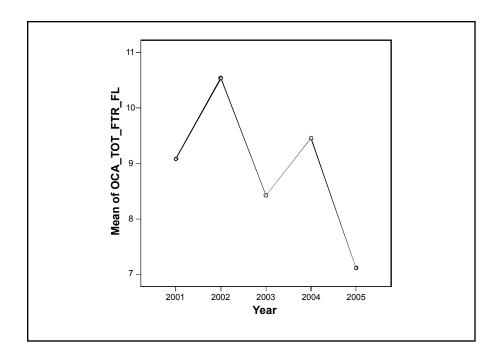
a Uses Harmonic Mean Sample Size = 54.405.

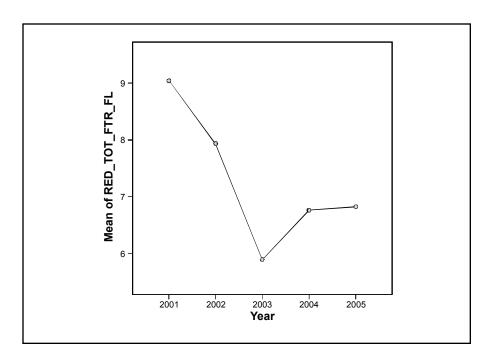

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

RED_TOT_FTR_FL


Tukey HSD


Year	N	Subset for alpha = .05					
		1	2	3			
2003	47	5.89					
2004	59	6.76					
2005	34	6.82					
2002	93		7.94				
2001	74			9.04			
Sig.		.053	1.000	1.000			


Means Plots



Means for groups in homogeneous subsets are displayed. a Uses Harmonic Mean Sample Size = 54.405. b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

A2. 2001 Attrition ANOVA

Author's original work using SPSS 12.0.1

Descriptives

				Std.		0E9/ Co	nfidence	Mini-	Maxi-
		N	Mean	Deviation	Std. Error		for Mean	mum	mum
				Boviation		Lower	Upper	mam	mam
						Bound	Bound		
F15_ING_ ATT	3-1	12	.119048	.1170558	.0337911	.044674	.193421	.0000	.2857
	3-2	15	.194444	.1108081	.0286105	.133081	.255808	.0000	.5000
	3-3	16	.228795	.1785975	.0446494	.133627	.323963	.0000	.6250
	4-1	15	.190079	.1521141	.0392757	.105841	.274317	.0000	.3750
	4-2	14	.135204	.1146017	.0306286	.069035	.201373	.0000	.2500
	Total	72	.177083	.1409508	.0166112	.143962	.210205	.0000	.6250
OCA_ING_ ATT	3-1	13	.119505	.1120846	.0310867	.051773	.187238	.0000	.2857
	3-2	15	.194444	.1108081	.0286105	.133081	.255808	.0000	.5000
	3-3	17	.178591	.1435578	.0348179	.104780	.252401	.0000	.5000
	4-1	15	.136263	.1049751	.0271044	.078129	.194396	.0000	.2727
	4-2	14	.135204	.1146017	.0306286	.069035	.201373	.0000	.2500
	Total	74	.154636	.1192056	.0138574	.127018	.182254	.0000	.5000
RED_ING_ ATT	3-1	13	.578144	.3011503	.0835241	.396161	.760127	.0000	1.0000
	3-2	15	.406402	.1149174	.0296716	.342763	.470042	.1667	.5833
	3-3	17	.575817	.1964744	.0476520	.474799	.676835	.3333	1.0000
	4-1	15	.629233	.2551380	.0658763	.487942	.770523	.0000	1.0000
	4-2	14	.663690	.1974868	.0527806	.549665	.777716	.3333	1.0000
	Total	74	.569337	.2307686	.0268263	.515873	.622802	.0000	1.0000

Test of Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
F15_ING_ATT	1.896	4	67	.121
OCA_ING_ATT	.971	4	69	.429
RED_ING_ATT	2.178	4	69	.080

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
F15_ING_ATT	Between Groups	.115	4	.029	1.484	.217
	Within Groups	1.296	67	.019		
	Total	1.411	71			
OCA_ING_ATT	Between Groups	.060	4	.015	1.058	.384
	Within Groups	.977	69	.014		
	Total	1.037	73			
RED_ING_ATT	Between Groups	.578	4	.145	3.015	.024
	Within Groups	3.309	69	.048		
	Total	3.888	73			

Post-Hoc Tests

Multiple Comparisons

Tukey HSD

Dependent Variable	(I) F1	(J) F1	Mean Difference (I-J)	Std. Error	Sig.	95% Confide	ence Interval
			(- /			Lower Bound	Upper Bound
F15_ING_	3-1	3-2	0753968	.0538604	.630	226392	.075598
ATT		3-3	1097470	.0531071	.247	258630	.039136
		4-1	0710317	.0538604	.681	222027	.079963
		4-2	0161565	.0547087	.998	169530	.137217
	3-2	3-1	.0753968	.0538604	.630	075598	.226392
		3-3	0343502	.0499803	.959	174468	.105767
		4-1	.0043651	.0507801	1.000	137994	.146725
		4-2	.0592404	.0516789	.781	085639	.204120
	3-3	3-1	.1097470	.0531071	.247	039136	.258630
		3-2	.0343502	.0499803	.959	105767	.174468
		4-1	.0387153	.0499803	.937	101402	.178833
		4-2	.0935906	.0508933	.360	049086	.236267
	4-1	3-1	.0710317	.0538604	.681	079963	.222027
		3-2	0043651	.0507801	1.000	146725	.137994
		3-3	0387153	.0499803	.937	178833	.101402
		4-2	.0548753	.0516789	.825	090004	.199755
	4-2	3-1	.0161565	.0547087	.998	137217	.169530
		3-2	0592404	.0516789	.781	204120	.085639
		3-3	0935906	.0508933	.360	236267	.049086
		4-1	0548753	.0516789	.825	199755	.090004
OCA_ING_	3-1	3-2	0749389	.0450998	.464	201274	.051396
ATT		3-3	0590850	.0438508	.663	181921	.063751
		4-1	0167571	.0450998	.996	143092	.109577
		4-2	0156986	.0458416	.997	144111	.112714
	3-2	3-1	.0749389	.0450998	.464	051396	.201274
		3-3	.0158539	.0421617	.996	102250	.133958
		4-1	.0581818	.0434593	.668	063557	.179921
		4-2	.0592404	.0442286	.668	064654	.183134
	3-3	3-1	.0590850	.0438508	.663	063751	.181921
		3-2	0158539	.0421617	.996	133958	.102250
		4-1	.0423279	.0421617	.853	075776	.160432
		4-2	.0433864	.0429542	.850	076938	.163711

Post-Hoc Tests (continued)

Dependent Variable	(I) F1	(J) F1	Mean Difference (I-J)	Std. Error	Sig.	95% Confide	ence Interval
						Lower Bound	Upper Bound
	4-1	3-1	.0167571	.0450998	.996	109577	.143092
		3-2	0581818	.0434593	.668	179921	.063557
		3-3	0423279	.0421617	.853	160432	.075776
		4-2	.0010585	.0442286	1.000	122835	.124952
	4-2	3-1	.0156986	.0458416	.997	112714	.144111
		3-2	0592404	.0442286	.668	183134	.064654
		3-3	0433864	.0429542	.850	163711	.076938
		4-1	0010585	.0442286	1.000	124952	.122835
RED_ING_	3-1	3-2	.1717416	.0829844	.245	060716	.404199
ATT		3-3	.0023271	.0806862	1.000	223693	.228347
		4-1	0510887	.0829844	.972	283546	.181369
		4-2	0855464	.0843492	.848	321827	.150734
	3-2	3-1	1717416	.0829844	.245	404199	.060716
		3-3	1694145	.0775782	.198	386728	.047899
		4-1	2228303	.0799658	.052	446832	.001171
		4-2	2572880(*)	.0813812	.019	485255	029321
	3-3	3-1	0023271	.0806862	1.000	228347	.223693
		3-2	.1694145	.0775782	.198	047899	.386728
		4-1	0534158	.0775782	.958	270729	.163898
		4-2	0878735	.0790364	.800	309272	.133525
	4-1	3-1	.0510887	.0829844	.972	181369	.283546
		3-2	.2228303	.0799658	.052	001171	.446832
		3-3	.0534158	.0775782	.958	163898	.270729
		4-2	0344577	.0813812	.993	262424	.193509
	4-2	3-1	.0855464	.0843492	.848	150734	.321827
		3-2	.2572880(*)	.0813812	.019	.029321	.485255
		3-3	.0878735	.0790364	.800	133525	.309272
		4-1	.0344577	.0813812	.993	193509	.262424

^{*} The mean difference is significant at the .05 level.

Homogeneous Subsets

F15_ING_ATT

Tukey HSD

F1	N	Subset for alpha = .05
		1
3-1	12	.119048
4-2	14	.135204
4-1	15	.190079
3-2	15	.194444
3-3	16	.228795
Sig.		.229

Means for groups in homogeneous subsets are displayed.

OCA_ING_ATT

Tukey HSD

F1	N	Subset for alpha = .05				
		1				
3-1	13	.119505				
4-2	14	.135204				
4-1	15	.136263				
3-3	17	.178591				
3-2	15	.194444				
Sig.		.437				

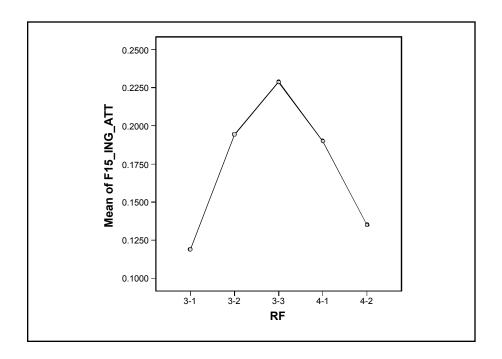
Means for groups in homogeneous subsets are displayed.

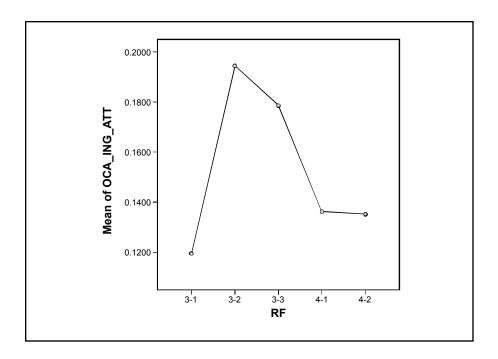
a Uses Harmonic Mean Sample Size = 14.261.

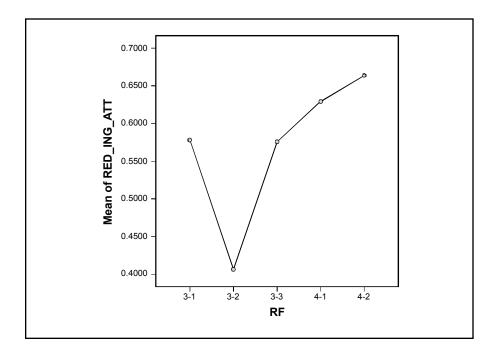
b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

a Uses Harmonic Mean Sample Size = 14.684.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.


RED_ING_ATT


Tukey HSD


F1	N	Subset for alpha = .05				
		1	2			
3-2	15	.406402				
3-3	17	.575817	.575817			
3-1	13	.578144	.578144			
4-1	15	.629233	.629233			
4-2	14		.663690			
Sig.		.056	.812			

Means for groups in homogeneous subsets are displayed. a Uses Harmonic Mean Sample Size = 14.684. b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Means Plots

2001 Force Ratio ANOVA

Descriptives

		N	Mean	Std.	Std. Error	95% Co		Mini-	Maxi-
				Deviation		Interval f	Upper	mum	mum
						Bound	Bound		
F15_FLOWN_ RATIO	3-1	13	.881716	.2762661	.0766224	.714770	1.048661	.0000	1.1429
	3-2	15	.729868	.1320880	.0341050	.656720	.803016	.5000	.9091
	3-3	17	.866667	.3190456	.0773799	.702629	1.030705	.0000	1.6000
	4-1	15	.896296	.0887565	.0229168	.847145	.945448	.6667	1.0000
	4-2	14	.880952	.0684142	.0182845	.841451	.920454	.7778	1.0000
	Total	74	.850290	.2106658	.0244894	.801482	.899097	.0000	1.6000
FLOWN_RATIO	3-1	13	.950092	.0804809	.0223214	.901457	.998726	.8750	1.1429
	3-2	15	.729868	.1320880	.0341050	.656720	.803016	.5000	.9091
	3-3	17	1.283497	.4437793	.1076323	1.055326	1.511667	.4444	2.4000
	4-1	15	1.321429	.1222615	.0315678	1.253722	1.389135	1.1111	1.5714
	4-2	14	.880952	.0684142	.0182845	.841451	.920454	.7778	1.0000
	Total	74	1.044235	.3277100	.0380955	.968311	1.120160	.4444	2.4000

Test of Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
F15_FLOWN_RATIO	2.199	4	69	.078
FLOWN_RATIO	6.293	4	69	.000

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
F15_FLOWN_RATIO	Between Groups	.280	4	.070	1.631	.176
	Within Groups	2.960	69	.043		
	Total	3.240	73			
FLOWN_RATIO	Between Groups	4.097	4	1.024	18.879	.000
	Within Groups	3.743	69	.054		
	Total	7.840	73			

Post-Hoc Tests

Multiple Comparisons

Tukey HSD

Dependent Variable	(I) F1	(J) F1	Mean Difference (I-J)	Std. Error	Sig.	95% Confide	ence Interval
			(1 0)			Lower Bound	Upper Bound
F15_FLOWN_	3-1	3-2	.1518476	.0784832	.309	068001	.371696
RATIO		3-3	.0150488	.0763097	1.000	198711	.228809
		4-1	0145808	.0784832	1.000	234430	.205268
		4-2	.0007631	.0797740	1.000	222701	.224228
	3-2	3-1	1518476	.0784832	.309	371696	.068001
		3-3	1367988	.0733702	.346	342325	.068727
		4-1	1664284	.0756283	.192	378280	.045423
		4-2	1510845	.0769670	.295	366686	.064517
	3-3	3-1	0150488	.0763097	1.000	228809	.198711
		3-2	.1367988	.0733702	.346	068727	.342325
		4-1	0296296	.0733702	.994	235156	.175897
		4-2	0142857	.0747493	1.000	223675	.195104
	4-1	3-1	.0145808	.0784832	1.000	205268	.234430
		3-2	.1664284	.0756283	.192	045423	.378280
		3-3	.0296296	.0733702	.994	175897	.235156
		4-2	.0153439	.0769670	1.000	200257	.230945
	4-2	3-1	0007631	.0797740	1.000	224228	.222701
		3-2	.1510845	.0769670	.295	064517	.366686
		3-3	.0142857	.0747493	1.000	195104	.223675
		4-1	0153439	.0769670	1.000	230945	.200257
FLOWN_	3-1	3-2	.2202237	.0882583	.104	027007	.467455
RATIO		3-3	3334052(*)	.0858140	.002	573789	093021
		4-1	3713370(*)	.0882583	.001	618568	124106
		4-2	.0691392	.0897098	.938	182158	.320436
	3-2	3-1	2202237	.0882583	.104	467455	.027007
		3-3	5536288(*)	.0825085	.000	784753	322504
		4-1	5915607(*)	.0850478	.000	829798	353323
		4-2	1510845	.0865532	.414	393539	.091370
	3-3	3-1	.3334052(*)	.0858140	.002	.093021	.573789
		3-2	.5536288(*)	.0825085	.000	.322504	.784753
		4-1	0379318	.0825085	.991	269056	.193193
		4-2	.4025444(*)	.0840594	.000	.167076	.638013

Post-Hoc Tests (continued)

Dependent Variable	(l) F1	(J) F1	Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval	
						Lower Bound	Upper Bound
	4-1	3-1	.3713370(*)	.0882583	.001	.124106	.618568
		3-2	.5915607(*)	.0850478	.000	.353323	.829798
		3-3	.0379318	.0825085	.991	193193	.269056
		4-2	.4404762(*)	.0865532	.000	.198022	.682931
	4-2	3-1	0691392	.0897098	.938	320436	.182158
		3-2	.1510845	.0865532	.414	091370	.393539
		3-3	4025444(*)	.0840594	.000	638013	167076
		4-1	4404762(*)	.0865532	.000	682931	198022

^{*} The mean difference is significant at the .05 level.

Homogeneous Subsets

F15_FLOWN_RATIO

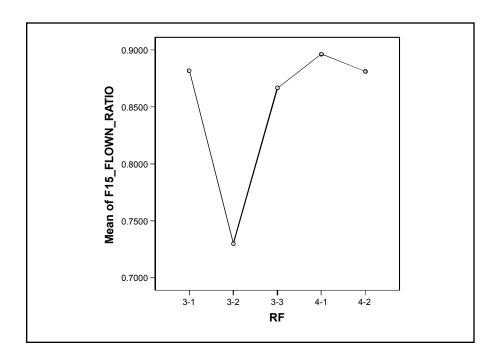
Tukey HSD

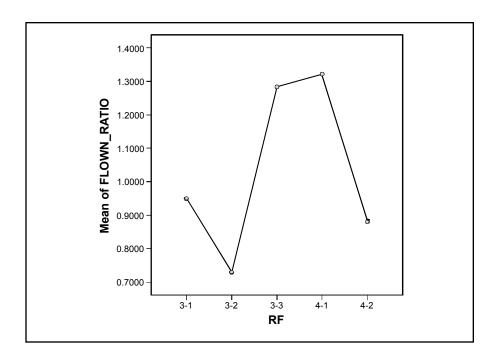
F1	N	Subset for alpha = .05			
		1			
3-2	15	.729868			
3-3	17	.866667			
4-2	14	.880952			
3-1	13	.881716			
4-1	15	.896296			
Sig.		.201			

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 14.684.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.


FLOWN_RATIO


Tukey HSD

F1	N	Subset for alpha = .05		
		1	2	
3-2	15	.729868		
4-2	14	.880952		
3-1	13	.950092		
3-3	17		1.283497	
4-1	15		1.321429	
Sig.		.089	.992	

Means for groups in homogeneous subsets are displayed. a Uses Harmonic Mean Sample Size = 14.684. b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Means Plots

2001 Force Ratio and Aircraft Sortie ANOVA

Descriptives

		N	Mean	Std.	Std. Error	95% Confidence		Mini-	Maxi-
	-			Deviation		Interval : Lower	for Mean Upper	mum	mum
						Bound	Bound		
F15_FLOWN_ RATIO	3-1	13	.881716	.2762661	.0766224	.714770	1.048661	.0000	1.1429
	3-2	15	.729868	.1320880	.0341050	.656720	.803016	.5000	.9091
	3-3	17	.866667	.3190456	.0773799	.702629	1.030705	.0000	1.6000
	4-1	15	.896296	.0887565	.0229168	.847145	.945448	.6667	1.0000
	4-2	14	.880952	.0684142	.0182845	.841451	.920454	.7778	1.0000
	Total	74	.850290	.2106658	.0244894	.801482	.899097	.0000	1.6000
FLOWN_ RATIO	3-1	13	.950092	.0804809	.0223214	.901457	.998726	.8750	1.1429
	3-2	15	.729868	.1320880	.0341050	.656720	.803016	.5000	.9091
	3-3	17	1.283497	.4437793	.1076323	1.055326	1.511667	.4444	2.4000
	4-1	15	1.321429	.1222615	.0315678	1.253722	1.389135	1.1111	1.5714
	4-2	14	.880952	.0684142	.0182845	.841451	.920454	.7778	1.0000
	Total	74	1.044235	.3277100	.0380955	.968311	1.120160	.4444	2.4000
OCA_F15_FL	3-1	12	7.58	.669	.193	7.16	8.01	6	8
	3-2	15	8.53	1.767	.456	7.55	9.51	4	10
	3-3	16	7.06	1.611	.403	6.20	7.92	4	8
	4-1	15	7.73	.594	.153	7.40	8.06	6	8
	4-2	14	7.79	.426	.114	7.54	8.03	7	8
	Total	72	7.74	1.256	.148	7.44	8.03	4	10
OCA_TOT_ FTR_FL	3-1	13	7.62	.650	.180	7.22	8.01	6	8
	3-2	15	8.53	1.767	.456	7.55	9.51	4	10
	3-3	17	9.71	2.568	.623	8.39	11.03	4	12
	4-1	15	11.40	.737	.190	10.99	11.81	10	12
	4-2	14	7.79	.426	.114	7.54	8.03	7	8
	Total	74	9.08	2.052	.239	8.61	9.56	4	12
RED_TOT_ FTR_FL	3-1	13	8.08	1.038	.288	7.45	8.70	6	9
	3-2	15	11.67	1.345	.347	10.92	12.41	8	13
	3-3	17	7.94	1.638	.397	7.10	8.78	4	9
	4-1	15	8.67	.617	.159	8.32	9.01	7	9
	4-2	14	8.86	.363	.097	8.65	9.07	8	9
	Total	74	9.04	1.763	.205	8.63	9.45	4	13

Test of Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
F15_FLOWN_RATIO	2.199	4	69	.078
FLOWN_RATIO	WN_RATIO 6.293		69	.000
OCA_F15_FL	7.536	4	67	.000
OCA_TOT_FTR_FL	12.991	4	69	.000
RED_TOT_FTR_FL 3.835		4	69	.007

ANOVA

		Sum of Squares	Df	Mean Square	F	Sig.
F15_FLOWN_RATIO	Between Groups	.280	4	.070	1.631	.176
	Within Groups	2.960	69	.043		
	Total	3.240	73			
FLOWN_RATIO	Between Groups	4.097	4	1.024	18.879	.000
	Within Groups	3.743	69	.054		
	Total	7.840	73			
OCA_F15_FL	Between Groups	17.108	4	4.277	3.020	.024
	Within Groups	94.878	67	1.416		
	Total	111.986	71			
OCA_TOT_FTR_FL	Between Groups	143.217	4	35.804	15.037	.000
	Within Groups	164.297	69	2.381		
	Total	307.514	73			
RED_TOT_FTR_FL	Between Groups	138.633	4	34.658	27.100	.000
	Within Groups	88.245	69	1.279		
	Total	226.878	73			

Post-Hoc Tests

Multiple Comparisons

Tukey HSD

Dependent Variable	(I) F1	(J) F1	Mean Difference (I-J)	Std. Error	Sig.	95% Coi Inte	
						Lower Bound	Upper Bound
F15_FLOWN_	3-1	3-2	.1518476	.0784832	.309	068001	.371696
RATIO		3-3	.0150488	.0763097	1.000	198711	.228809
		4-1	0145808	.0784832	1.000	234430	.205268
		4-2	.0007631	.0797740	1.000	222701	.224228
	3-2	3-1	1518476	.0784832	.309	371696	.068001
		3-3	1367988	.0733702	.346	342325	.068727
		4-1	1664284	.0756283	.192	378280	.045423
		4-2	1510845	.0769670	.295	366686	.064517
İ	3-3	3-1	0150488	.0763097	1.000	228809	.198711
İ		3-2	.1367988	.0733702	.346	068727	.342325
		4-1	0296296	.0733702	.994	235156	.175897
		4-2	0142857	.0747493	1.000	223675	.195104
	4-1	3-1	.0145808	.0784832	1.000	205268	.234430
		3-2	.1664284	.0756283	.192	045423	.378280
		3-3	.0296296	.0733702	.994	175897	.235156
		4-2	.0153439	.0769670	1.000	200257	.230945
	4-2	3-1	0007631	.0797740	1.000	224228	.222701
		3-2	.1510845	.0769670	.295	064517	.366686
		3-3	.0142857	.0747493	1.000	195104	.223675
		4-1	0153439	.0769670	1.000	230945	.200257
FLOWN_	3-1	3-2	.2202237	.0882583	.104	027007	.467455
RATIO		3-3	3334052(*)	.0858140	.002	573789	093021
		4-1	3713370(*)	.0882583	.001	618568	124106
		4-2	.0691392	.0897098	.938	182158	.320436
	3-2	3-1	2202237	.0882583	.104	467455	.027007
		3-3	5536288(*)	.0825085	.000	784753	322504
		4-1	5915607(*)	.0850478	.000	829798	353323
		4-2	1510845	.0865532	.414	393539	.091370
	3-3	3-1	.3334052(*)	.0858140	.002	.093021	.573789
		3-2	.5536288(*)	.0825085	.000	.322504	.784753
		4-1	0379318	.0825085	.991	269056	.193193
I		4-2	.4025444(*)	.0840594	.000	.167076	.638013

Post-Hoc Tests (continued)

Dependent Variable	(I) F1	(J) F1	Mean Difference (I-J)	Std. Error	Sig.	95% Coi Inte	
			(1.0)			Lower Bound	Upper Bound
	4-1	3-1	.3713370(*)	.0882583	.001	.124106	.618568
		3-2	.5915607(*)	.0850478	.000	.353323	.829798
		3-3	.0379318	.0825085	.991	193193	.269056
		4-2	.4404762(*)	.0865532	.000	.198022	.682931
	4-2	3-1	0691392	.0897098	.938	320436	.182158
		3-2	.1510845	.0865532	.414	091370	.393539
		3-3	4025444(*)	.0840594	.000	638013	167076
		4-1	4404762(*)	.0865532	.000	682931	198022
OCA_F15_FL	3-1	3-2	950	.461	.249	-2.24	.34
		3-3	.521	.454	.781	75	1.79
		4-1	150	.461	.998	-1.44	1.14
		4-2	202	.468	.993	-1.51	1.11
	3-2	3-1	.950	.461	.249	34	2.24
		3-3	1.471(*)	.428	.009	.27	2.67
		4-1	.800	.435	.359	42	2.02
		4-2	.748	.442	.447	49	1.99
	3-3	3-1	521	.454	.781	-1.79	.75
		3-2	-1.471(*)	.428	.009	-2.67	27
		4-1	671	.428	.523	-1.87	.53
		4-2	723	.435	.465	-1.94	.50
	4-1	3-1	.150	.461	.998	-1.14	1.44
		3-2	800	.435	.359	-2.02	.42
		3-3	.671	.428	.523	53	1.87
		4-2	052	.442	1.000	-1.29	1.19
	4-2	3-1	.202	.468	.993	-1.11	1.51
		3-2	748	.442	.447	-1.99	.49
		3-3	.723	.435	.465	50	1.94
		4-1	.052	.442	1.000	-1.19	1.29
OCA_TOT_	3-1	3-2	918	.585	.522	-2.56	.72
FTR_FL		3-3	-2.090(*)	.569	.004	-3.68	50
		4-1	-3.785(*)	.585	.000	-5.42	-2.15
		4-2	170	.594	.998	-1.84	1.49
	3-2	3-1	.918	.585	.522	72	2.56
		3-3	-1.173	.547	.213	-2.70	.36

Post-Hoc Tests (continued)

Dependent Variable	(I) F1	(J) F1	Mean Difference (I-J)	Std. Error	Sig.		nfidence rval
			(1.3)			Lower Bound	Upper Bound
		4-1	-2.867(*)	.563	.000	-4.45	-1.29
		4-2	.748	.573	.690	86	2.35
	3-3	3-1	2.090(*)	.569	.004	.50	3.68
		3-2	1.173	.547	.213	36	2.70
		4-1	-1.694(*)	.547	.023	-3.23	16
		4-2	1.920(*)	.557	.008	.36	3.48
	4-1	3-1	3.785(*)	.585	.000	2.15	5.42
		3-2	2.867(*)	.563	.000	1.29	4.45
		3-3	1.694(*)	.547	.023	.16	3.23
		4-2	3.614(*)	.573	.000	2.01	5.22
	4-2	3-1	.170	.594	.998	-1.49	1.84
İ		3-2	748	.573	.690	-2.35	.86
		3-3	-1.920(*)	.557	.008	-3.48	36
		4-1	-3.614(*)	.573	.000	-5.22	-2.01
RED_TOT_	3-1	3-2	-3.590(*)	.429	.000	-4.79	-2.39
FTR_FL		3-3	.136	.417	.998	-1.03	1.30
		4-1	590	.429	.645	-1.79	.61
		4-2	780	.436	.387	-2.00	.44
	3-2	3-1	3.590(*)	.429	.000	2.39	4.79
		3-3	3.725(*)	.401	.000	2.60	4.85
		4-1	3.000(*)	.413	.000	1.84	4.16
		4-2	2.810(*)	.420	.000	1.63	3.99
	3-3	3-1	136	.417	.998	-1.30	1.03
		3-2	-3.725(*)	.401	.000	-4.85	-2.60
		4-1	725	.401	.376	-1.85	.40
		4-2	916	.408	.176	-2.06	.23
	4-1	3-1	.590	.429	.645	61	1.79
		3-2	-3.000(*)	.413	.000	-4.16	-1.84
		3-3	.725	.401	.376	40	1.85
		4-2	190	.420	.991	-1.37	.99
	4-2	3-1	.780	.436	.387	44	2.00
		3-2	-2.810(*)	.420	.000	-3.99	-1.63
		3-3	.916	.408	.176	23	2.06
		4-1	.190	.420	.991	99	1.37

^{*} The mean difference is significant at the .05 level.

Homogeneous Subsets

F15_FLOWN_RATIO

Tukey HSD

F1	N	Subset for alpha = .05			
		1			
3-2	15	.729868			
3-3	17	.866667			
4-2	14	.880952			
3-1	13	.881716			
4-1	15	.896296			
Sig.		.201			

Means for groups in homogeneous subsets are displayed.

FLOWN_RATIO

Tukey HSD

F1	N	Subset for alpha = .05		
		1	2	
3-2	15	.729868		
4-2	14	.880952		
3-1	13	.950092		
3-3	17		1.283497	
4-1	15		1.321429	
Sig.		.089	.992	

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 14.684.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

a Uses Harmonic Mean Sample Size = 14.684.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

OCA_F15_FL

Tukey HSD

F1	N	Subset for alpha = .05		
		1	2	
3-3	16	7.06		
3-1	12	7.58	7.58	
4-1	15	7.73	7.73	
4-2	14	7.79	7.79	
3-2	15		8.53	
Sig.		.488	.219	

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 14.261.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

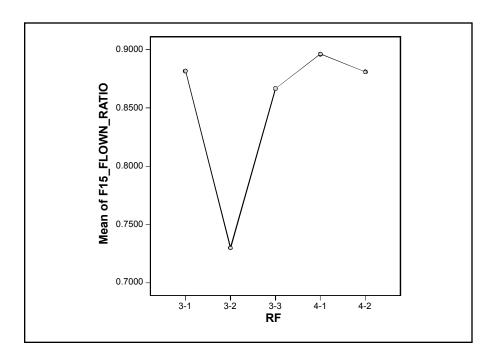
OCA_TOT_FTR_FL

Tukey HSD

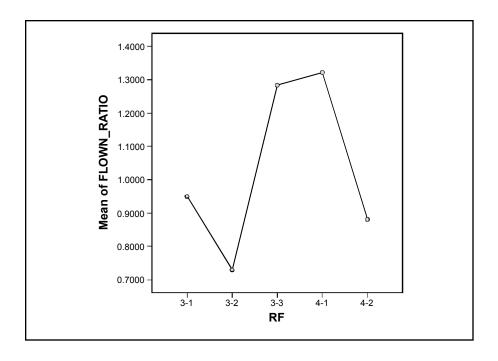
F1	N	Subset for alpha = .05			
		1	2	3	
3-1	13	7.62			
4-2	14	7.79			
3-2	15	8.53	8.53		
3-3	17		9.71		
4-1	15			11.40	
Sig.		.495	.250	1.000	

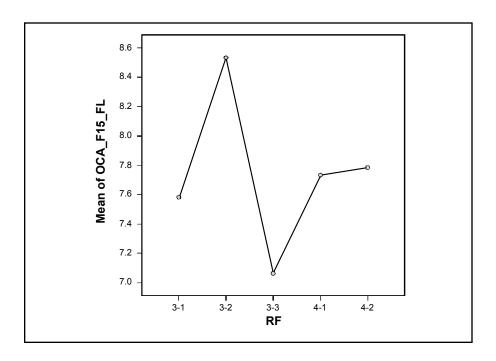
Means for groups in homogeneous subsets are displayed.

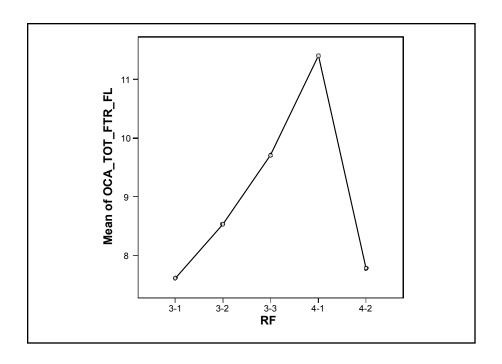
a Uses Harmonic Mean Sample Size = 14.684.

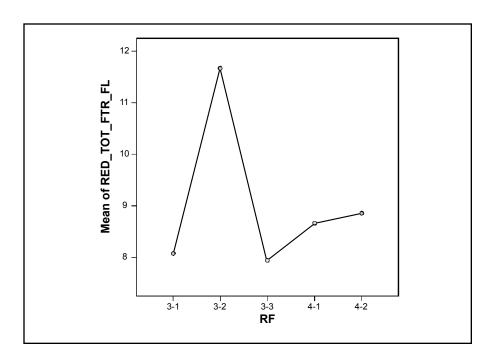

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

RED_TOT_FTR_FL


Tukey HSD


F1	N	Subset for alpha = .05			
		1	2		
3-3	17	7.94			
3-1	13	8.08			
4-1	15	8.67			
4-2	14	8.86			
3-2	15		11.67		
Sig.		.194	1.000		


Means Plots



Means for groups in homogeneous subsets are displayed. a Uses Harmonic Mean Sample Size = 14.684. b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

A3. Variation in Attrition by Week and Day T-Test

Author's original work using SPSS 12.0.1

Group Statistics

	WK	N	Mean	Std. Deviation	Std. Error Mean
F15_ING_ATT	1	140	.122828	.1533635	.0129616
	2	159	.139354	.1519543	.0120508
OCA_ING_ATT	1	140	.113246	.1414239	.0119525
	2	167	.131077	.1386506	.0107291
RED_ING_ATT	1	140	.698957	.2210454	.0186817
	2	167	.733215	.2253592	.0174388

Independent Samples Test

		for Equ	e's Test ality of inces	T-test for Equality of Means						
		F	Sig.	Т	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Cor Interval Differ	of the
									Lower	Upper
F15_ING_ ATT	Equal variances assumed	.059	.809	934	297	.351	0165254	.0176877	0513345	.0182837
	Equal variances not assumed			934	291.529	.351	0165254	.0176981	0513577	.0183069
OCA_ING_ ATT	Equal variances assumed	.169	.681	-1.112	305	.267	0178308	.0160336	0493812	.0137197
	Equal variances not assumed			-1.110	293.621	.268	0178308	.0160616	0494413	.0137797
RED_ING_ ATT	Equal variances assumed	.331	.565	-1.338	305	.182	0342581	.0255998	0846328	.0161165
	Equal variances not assumed			-1.341	297.582	.181	0342581	.0255562	0845519	.0160357

WEEK 1: Monday-Friday ANOVA

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
F15_ING_ATT	Between Groups	.026	4	.006	.266	.899
	Within Groups	3.244	135	.024		
	Total	3.269	139			
OCA_ING_ATT	Between Groups	.017	4	.004	.213	.931
	Within Groups	2.763	135	.020		
	Total	2.780	139			
RED_ING_ATT	Between Groups	.223	4	.056	1.145	.338
	Within Groups	6.569	135	.049		
	Total	6.792	139			

WEEK 2: Monday-Friday ANOVA

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
F15_ING_ATT	Between Groups	.278	4	.069	3.175	.015
	Within Groups	3.370	154	.022		
	Total	3.648	158			
OCA_ING_ATT	Between Groups	.278	4	.069	3.863	.005
	Within Groups	2.913	162	.018		
	Total	3.191	166			
RED_ING_ATT	Between Groups	.202	4	.051	.994	.412
	Within Groups	8.229	162	.051		
	Total	8.431	166			

WEEK 2: Monday-Friday ANOVA

Descriptives

		N	Mean	Std.	Std. Error	95% Co		Mini-	Maxi-
		- '	Wiodii	Deviation	Old. Elloi	Interval f		mum	mum
						Lower Bound	Upper Bound		
F15_ING_	MON	37	.091763	.1170542	.0192436	.052735	.130791	.0000	.3750
ATT	TUE	37	.104794	.1051496	.0172865	.069735	.139853	.0000	.3750
	WED	35	.149107	.1618597	.0273593	.093506	.204708	.0000	.7500
	THU	34	.190278	.1720798	.0295114	.130236	.250319	.0000	.6250
	FRI	16	.199777	.2018430	.0504607	.092222	.307331	.0000	.5714
	Total	159	.139354	.1519543	.0120508	.115552	.163155	.0000	.7500
OCA_ING_	MON	38	.085617	.1045232	.0169559	.051262	.119973	.0000	.2727
ATT	TUE	37	.096101	.0878778	.0144470	.066801	.125401	.0000	.2727
	WED	36	.141738	.1501752	.0250292	.090926	.192550	.0000	.7500
	THU	36	.162207	.1483514	.0247252	.112012	.212402	.0000	.5000
	FRI	20	.206932	.1879903	.0420359	.118950	.294914	.0000	.5000
	Total	167	.131077	.1386506	.0107291	.109894	.152260	.0000	.7500
RED_ING_	MON	38	.773405	.2335313	.0378838	.696646	.850165	.0000	1.0000
ATT	TUE	37	.724625	.2155671	.0354390	.652751	.796498	.2857	1.0000
	WED	36	.726546	.2080172	.0346695	.656163	.796929	.2727	1.0000
	THU	36	.681468	.2435892	.0405982	.599050	.763887	.1111	1.0000
	FRI	20	.777895	.2232032	.0499098	.673433	.882357	.2500	1.0000
	Total	167	.733215	.2253592	.0174388	.698785	.767646	.0000	1.0000

Test of Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
F15_ING_ATT	3.300	4	154	.013
OCA_ING_ATT	4.818	4	162	.001
RED_ING_ATT	.349	4	162	.844

ANOVA

		Sum of Squares	Df	Mean Square	F	Sig.
F15_ING_ATT	Between Groups	.278	4	.069	3.175	.015
	Within Groups	3.370	154	.022		
	Total	3.648	158			
OCA_ING_ATT	Between Groups	.278	4	.069	3.863	.005
	Within Groups	2.913	162	.018		
	Total	3.191	166			
RED_ING_ATT	Between Groups	.202	4	.051	.994	.412
	Within Groups	8.229	162	.051		
	Total	8.431	166			

Post-Hoc Tests

Multiple Comparisons

Tukey HSD

Dependent Variable	(I) DAY2	(J) DAY2	Mean Difference (I-J)	Std. Error	Sig.		nfidence rval
			(- /		_	Lower Bound	Upper Bound
F15_ING_ATT	MON	TUE	0130309	.0343946	.996	107973	.081911
		WED	0573437	.0348825	.472	153632	.038945
		THU	0985146(*)	.0351451	.045	195528	001501
		FRI	1080136	.0442642	.110	230199	.014172
	TUE	MON	.0130309	.0343946	.996	081911	.107973
		WED	0443128	.0348825	.710	140601	.051976
		THU	0854837	.0351451	.112	182497	.011530
		FRI	0949827	.0442642	.206	217168	.027203
	WED	MON	.0573437	.0348825	.472	038945	.153632
		TUE	.0443128	.0348825	.710	051976	.140601
		THU	0411709	.0356227	.776	139503	.057161
		FRI	0506699	.0446444	.788	173905	.072565
	THU	MON	.0985146(*)	.0351451	.045	.001501	.195528
		TUE	.0854837	.0351451	.112	011530	.182497
		WED	.0411709	.0356227	.776	057161	.139503
		FRI	0094990	.0448499	1.000	133301	.114303
	FRI	MON	.1080136	.0442642	.110	014172	.230199
		TUE	.0949827	.0442642	.206	027203	.217168
		WED	.0506699	.0446444	.788	072565	.173905
		THU	.0094990	.0448499	1.000	114303	.133301
OCA_ING_ATT	MON	TUE	0104835	.0309724	.997	095929	.074962
		WED	0561209	.0311896	.378	142165	.029923
		THU	0765899	.0311896	.106	162634	.009454
		FRI	1213144(*)	.0370463	.011	223516	019113
	TUE	MON	.0104835	.0309724	.997	074962	.095929
		WED	0456374	.0313940	.594	132245	.040971
		THU	0661064	.0313940	.223	152714	.020502
		FRI	1108308(*)	.0372185	.027	213507	008154
	WED	MON	.0561209	.0311896	.378	029923	.142165
		TUE	.0456374	.0313940	.594	040971	.132245

Post-Hoc Tests (continued)

Dependent Variable	(I) DAY2	(J) DAY2	Mean Difference (I-J)	Std. Error	Sig.	95% Co	
						Lower Bound	Upper Bound
		THU	0204690	.0316083	.967	107668	.066730
		FRI	0651935	.0373994	.411	168369	.037982
	THU	MON	.0765899	.0311896	.106	009454	.162634
		TUE	.0661064	.0313940	.223	020502	.152714
		WED	.0204690	.0316083	.967	066730	.107668
		FRI	0447244	.0373994	.754	147900	.058451
	FRI	MON	.1213144(*)	.0370463	.011	.019113	.223516
		TUE	.1108308(*)	.0372185	.027	.008154	.213507
		WED	.0651935	.0373994	.411	037982	.168369
		THU	.0447244	.0373994	.754	058451	.147900
RED_ING_ATT	MON	TUE	.0487808	.0520526	.882	094819	.192381
		WED	.0468593	.0524176	.899	097748	.191466
		THU	.0919370	.0524176	.404	052670	.236544
		FRI	0044896	.0622604	1.000	176250	.167271
	TUE	MON	0487808	.0520526	.882	192381	.094819
		WED	0019216	.0527611	1.000	147476	.143633
		THU	.0431562	.0527611	.925	102398	.188711
		FRI	0532704	.0625498	.914	225829	.119289
	WED	MON	0468593	.0524176	.899	191466	.097748
		TUE	.0019216	.0527611	1.000	143633	.147476
		THU	.0450778	.0531213	.915	101470	.191626
		FRI	0513488	.0628539	.925	224747	.122049
	THU	MON	0919370	.0524176	.404	236544	.052670
		TUE	0431562	.0527611	.925	188711	.102398
		WED	0450778	.0531213	.915	191626	.101470
		FRI	0964266	.0628539	.542	269825	.076971
	FRI	MON	.0044896	.0622604	1.000	167271	.176250
		TUE	.0532704	.0625498	.914	119289	.225829
		WED	.0513488	.0628539	.925	122049	.224747
		THU	.0964266	.0628539	.542	076971	.269825

^{*} The mean difference is significant at the .05 level.

Homogeneous Subsets

F15_ING_ATT

Tukey HSD

DAY2	N	Subset for alpha = .05		
		1	2	
MON	37	.091763		
TUE	37	.104794	.104794	
WED	35	.149107	.149107	
THU	34	.190278	.190278	
FRI	16		.199777	
Sig.		.091	.113	

Means for groups in homogeneous subsets are displayed.

OCA_ING_ATT

Tukey HSD

DAY2	N	Subset for alpha = .05		
		1	2	
MON	38	.085617		
TUE	37	.096101		
WED	36	.141738	.141738	
THU	36	.162207	.162207	
FRI	20		.206932	
Sig.		.162	.307	

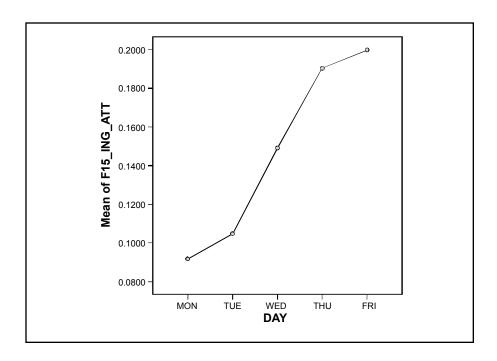
Means for groups in homogeneous subsets are displayed.

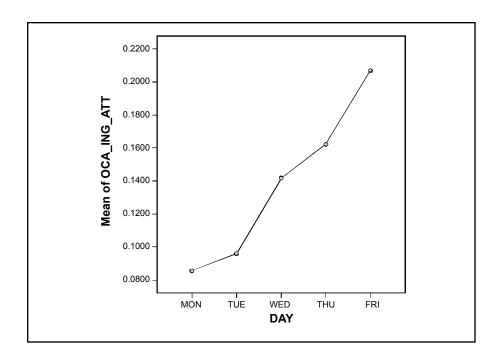
a Uses Harmonic Mean Sample Size = 28.647.

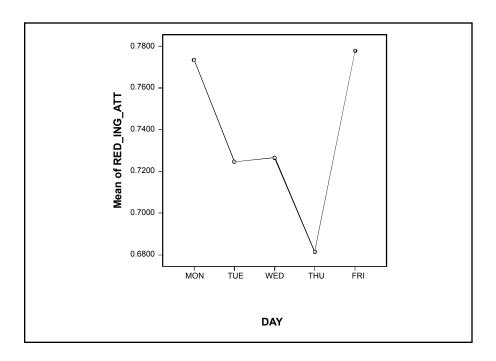
b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

a Uses Harmonic Mean Sample Size = 31.467.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.


RED_ING_ATT


Tukey HSD


DAY2	N	Subset for alpha = .05			
		1			
THU	36	.681468			
TUE	37	.724625			
WED	36	.726546			
MON	38	.773405			
FRI	20	.777895			
Sig.		.439			

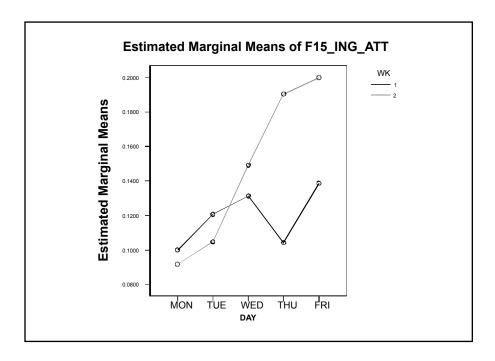
Means for groups in homogeneous subsets are displayed. a Uses Harmonic Mean Sample Size = 31.467. b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Means Plots

Univariate Analysis of Variance-F-15C Attrition

Between-Subjects Factors

		Value Label	N
DAY2	1	MON	41
	2	TUE	68
	3	WED	71
	4	THU	70
	5	FRI	49
wĸ	1		140
	2		159


Tests of Between-Subjects Effects

Dependent Variable: F15_ING_ATT

Source	Type III Sum of Squares	Df	Mean Square	F	Sig.
Corrected Model	.324(a)	9	.036	1.572	.123
Intercept	3.263	1	3.263	142.559	.000
DAY2	.117	4	.029	1.276	.280
WK	.037	1	.037	1.597	.207
DAY2 * WK	.108	4	.027	1.185	.318
Error	6.614	289	.023		
Total	12.117	299			
Corrected Total	6.938	298			

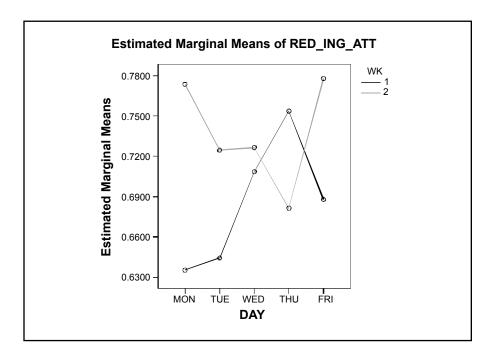
a R Squared = .047 (Adjusted R Squared = .017)

Profile Plots

Univariate Analysis of Variance-Red Air Attrition

Between-Subjects Factors

		Value Label	N
DAY2	1	MON	42
	2	TUE	68
	3	WED	72
	4	THU	72
	5	FRI	53
wĸ	1		140
	2		167


Tests of Between-Subjects Effects

Dependent Variable: RED_ING_ATT

Source	Type III Sum of Squares	Df	Mean Square	F	Sig.
Corrected Model	.514(a)	9	.057	1.147	.329
Intercept	96.023	1	96.023	1927.284	.000
DAY2	.078	4	.019	.390	.816
WK	.123	1	.123	2.460	.118
DAY2 * WK	.320	4	.080	1.604	.173
Error	14.797	297	.050		
Total	173.398	307			
Corrected Total	15.312	306			

a R Squared = .034 (Adjusted R Squared = .004)

Profile Plots

A4. Day-Night Independent Samples T-test Author's original work using SPSS 12.0.1

Group Statistics

	LIGHT	N	Mean	Std. Deviation	Std. Error Mean
F15_ING_ATT	DAY	185	.145597	.1589280	.0116846
	NIGHT	114	.108928	.1393907	.0130551
OCA_ING_ATT	DAY	190	.133635	.1439208	.0104411
	NIGHT	117	.105587	.1320833	.0122111
RED_ING_ATT	DAY	190	.693107	.2195623	.0159287
	NIGHT	117	.757356	.2255554	.0208526

Independent Samples Test

		Levene for Equ Varia	ality of	T-test for Equality of Means						
		F	Sig.	t	Df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Coi Interva Differ	
									Lower	Upper
F15_ING_ ATT	Equal variances assumed	5.253	.023	2.029	297	.043	.0366686	.0180736	.0011000	.0722371
	Equal variances not assumed			2.093	262.933	.037	.0366686	.0175205	.0021703	.0711668
OCA_ING_ ATT	Equal variances assumed	2.234	.136	1.710	305	.088	.0280486	.0163979	0042188	.0603160
	Equal variances not assumed			1.746	261.751	.082	.0280486	.0160664	0035871	.0596844
RED_ING_ ATT	Equal variances assumed	.801	.371	-2.464	305	.014	0642494	.0260723	1155539	0129450
	Equal variances not assumed			-2.448	240.591	.015	0642494	.0262403	1159396	0125593

A5. Threat Aircraft ANOVA

Author's original work using SPSS 12.0.1

Descriptives

		N	Mean	Std. Deviation	Std. Error		nfidence for Mean	Mini- mum	Maxi- mum
				2011411011		Lower Bound	Upper Bound		
F15_ING_ATT	MiG-23	34	.073214	.1245783	.0213650	.029747	.116682	.0000	.4286
	MiG-29	141	.115802	.1453636	.0122418	.091599	.140005	.0000	.7500
	SU-27	124	.165611	.1606120	.0144234	.137061	.194162	.0000	.7500
	Total	299	.131616	.1525829	.0088241	.114251	.148981	.0000	.7500
OCA_ING_ATT	MiG-23	34	.073214	.1245783	.0213650	.029747	.116682	.0000	.4286
	MiG-29	142	.106489	.1305409	.0109548	.084832	.128145	.0000	.7500
	SU-27	131	.153692	.1476529	.0129005	.128170	.179215	.0000	.7500
	Total	307	.122946	.1399754	.0079888	.107226	.138666	.0000	.7500
RED_ING_ATT	MiG-23	34	.751471	.2415154	.0414196	.667202	.835739	.0000	1.0000
	MiG-29	142	.717246	.2228020	.0186971	.680283	.754208	.0000	1.1250
	SU-27	131	.709176	.2208224	.0192933	.671007	.747346	.1111	1.0000
	Total	307	.717593	.2236921	.0127668	.692471	.742714	.0000	1.1250

Test of Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
F15_ING_ATT	1.625	2	296	.199
OCA_ING_ATT	1.695	2	304	.185
RED_ING_ATT	.024	2	304	.976

ANOVA

		Sum of Squares	Df	Mean Square	F	Sig.
F15_ING_ATT	Between Groups	.295	2	.147	6.562	.002
	Within Groups	6.643	296	.022		
	Total	6.938	298			
OCA_ING_ATT	Between Groups	.246	2	.123	6.514	.002
	Within Groups	5.749	304	.019		
	Total	5.995	306			
RED_ING_ATT	Between Groups	.048	2	.024	.481	.619
	Within Groups	15.263	304	.050		
	Total	15.312	306			

Post-Hoc Tests

Multiple Comparisons

Tukey HSD

Dependent Variable	(I) THRT_AC	(J) THRT_AC	Mean Difference (I-J)	Std. Error	Sig.		onfidence erval	
						Lower Bound	Upper Bound	
F15_ING_	MiG-23	MiG-29	0425879	.0286232	.298	110012	.024836	
ATT		SU-27	0923971(*)	.0290019	.005	160713	024081	
	MiG-29	MiG-23	.0425879	.0286232	.298	024836	.110012	
		SU-27	0498092(*)	.0184438	.020	093255	006364	
	SU-27	MiG-23	.0923971(*)	.0290019	.005	.024081	.160713	
		MiG-29	.0498092(*)	.0184438	.020	.006364	.093255	
OCA_ING_	MiG-23	MiG-29	0332743	.0262564	.415	095115	.028566	
ATT		SU-27	0804782(*)	.0264686	.007	142818	018138	
	MiG-29	MiG-23	.0332743	.0262564	.415	028566	.095115	
		SU-27	0472039(*)	.0166596	.014	086441	007966	
	SU-27	MiG-23	.0804782(*)	.0264686	.007	.018138	.142818	
		MiG-29	.0472039(*)	.0166596	.014	.007966	.086441	
RED_ING_	MiG-23	MiG-29	.0342250	.0427820	.703	066537	.134987	
ATT		SU-27	.0422944	.0431276	.590	059282	.143871	
	MiG-29	MiG-23	0342250	.0427820	.703	134987	.066537	
		SU-27	.0080694	.0271450	.952	055864	.072003	
	SU-27	MiG-23	0422944	.0431276	.590	143871	.059282	
		MiG-29	0080694	.0271450	.952	072003	.055864	

^{*} The mean difference is significant at the .05 level.

Homogeneous Subsets

F15_ING_ATT

Tukey HSD

THRT_AC	N	Subset for alpha = .05				
		1 2				
MiG-23	34	.073214				
MiG-29	141	.115802	.115802			
SU-27	124		.165611			
Sig.		.227	.132			

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 67.312.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

OCA_ING_ATT

Tukey HSD

THRT_AC	N	Subset for alpha = .05				
		1 2				
MiG-23	34	.073214				
MiG-29	142	.106489	.106489			
SU-27	131		.153692			
Sig.		.336	.113			

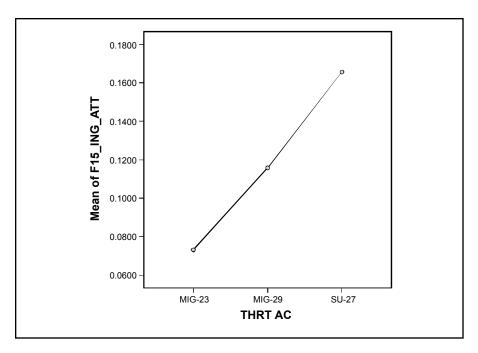
Means for groups in homogeneous subsets are displayed.

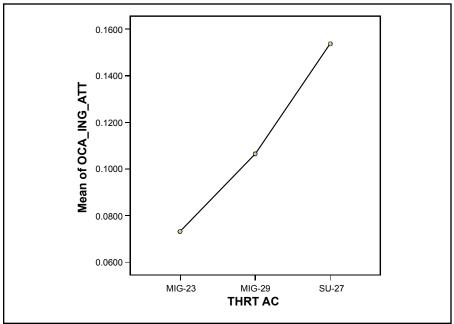
a Uses Harmonic Mean Sample Size = 68.046.

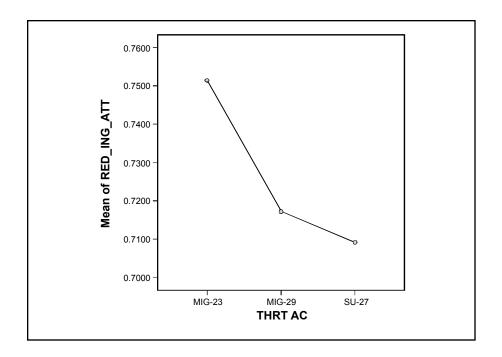
b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

RED_ING_ATT

Tukey HSD


THRT_AC	N	Subset for alpha = .05
		1
SU-27	131	.709176
MIG-29	142	.717246
MiG-23	34	.751471
Sig.		.514


Means for groups in homogeneous subsets are displayed.


a Uses Harmonic Mean Sample Size = 68.046.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Means Plots

A6. Threat Weapons T-test

Author's original work using SPSS 12.0.1

Group Statistics

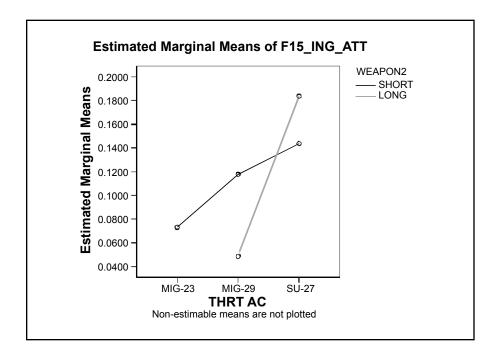
	WEAPON2	N	Mean	Std. Deviation	Std. Error Mean
F15_ING_ATT	SHORT	227	.117505	.1409548	.0093555
	LONG	72	.176104	.1784115	.0210260
OCA_ING_ATT	SHORT	228	.108016	.1272607	.0084280
	LONG	79	.166034	.1649272	.0185558
RED_ING_ATT	SHORT	228	.714948	.2232472	.0147849
	LONG	79	.725225	.2262275	.0254526

		Leve Test Equal Varia	for ity of	T-test for Equality of Means						
		F	Sig.	Т	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference		nfidence Il of the rence
									Lower	Upper
F15_ING_ ATT	Equal variances assumed	4.010	.046	-2.874	297	.004	0585981	.0203909	0987271	0184691
	Equal variances not assumed			-2.546	100.657	.012	0585981	.0230134	1042525	0129438
OCA_ING_ ATT	Equal variances assumed	6.344	.012	-3.223	305	.001	0580178	.0180002	0934381	0225975
	Equal variances not assumed			-2.847	111.866	.005	0580178	.0203801	0983989	0176368
RED_ING_ ATT	Equal variances assumed	.038	.845	351	305	.726	0102764	.0292457	0678253	.0472724
	Equal variances not assumed			349	134.266	.728	0102764	.0294351	0684930	.0479401

Univariate Analysis of Variance

Between-Subjects Factors

		Value Label	N
WEAPON2	2	SHORT	227
	3	LONG	72
THRT_AC	3	MiG-23	34
	4	MiG-29	141
	5	SU-27	124


Tests of Between-Subjects Effects

Dependent Variable: F15_ING_ATT

Source	Type III Sum of Squares	Df	Mean Square	F	Sig.
Corrected Model	.362(a)	4	.090	4.044	.003
Intercept	.733	1	.733	32.771	.000
WEAPON2	.003	1	.003	.133	.716
THRT_AC	.173	2	.087	3.872	.022
WEAPON2 * THRT_AC	.041	1	.041	1.832	.177
Error	6.576	294	.022		
Total	12.117	299			
Corrected Total	6.938	298			

a R Squared = .052 (Adjusted R Squared = .039)

Profile Plots

One Way

Warnings

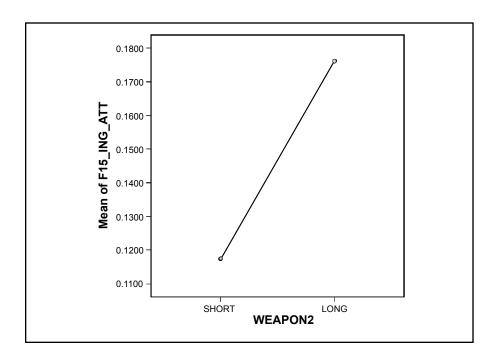
Post-hoc tests are not performed for F15_ING_ATT because there are fewer than three groups.

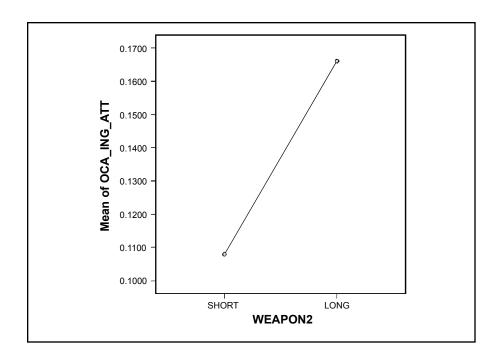
Post-hoc tests are not performed for OCA_ING_ATT because there are fewer than three groups.

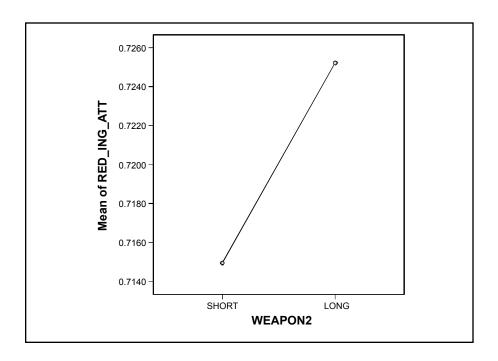
Post-hoc tests are not performed for RED_ING_ATT because there are fewer than three groups.

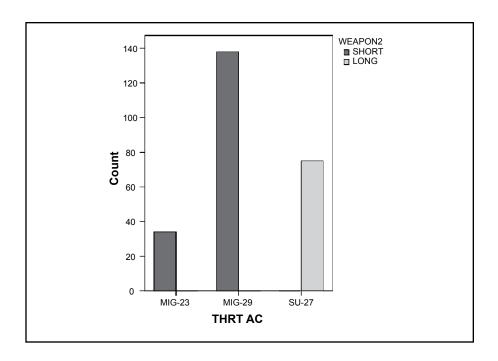
Descriptives

		N	Mean	Std. Deviation	Std. Error		nfidence for Mean	Mini- mum	Maxi- mum
						Lower Bound	Upper Bound		
F15_ING_ ATT	SHORT	227	.117505	.1409548	.0093555	.099070	.135941	.0000	.7500
	LONG	72	.176104	.1784115	.0210260	.134179	.218028	.0000	.7500
	Total	299	.131616	.1525829	.0088241	.114251	.148981	.0000	.7500
OCA_ING_ ATT	SHORT	228	.108016	.1272607	.0084280	.091409	.124623	.0000	.7500
	LONG	79	.166034	.1649272	.0185558	.129092	.202976	.0000	.7500
	Total	307	.122946	.1399754	.0079888	.107226	.138666	.0000	.7500
RED_ING_ ATT	SHORT	228	.714948	.2232472	.0147849	.685815	.744081	.0000	1.1250
	LONG	79	.725225	.2262275	.0254526	.674552	.775897	.1111	1.0000
	Total	307	.717593	.2236921	.0127668	.692471	.742714	.0000	1.1250


Test of Homogeneity of Variances


	Levene Statistic	df1	df2	Sig.
F15_ING_ATT	4.010	1	297	.046
OCA_ING_ATT	6.344	1	305	.012
RED_ING_ATT	.038	1	305	.845


ANOVA


		Sum of Squares	df	Mean Square	F	Sig.
F15_ING_ATT	Between Groups	.188	1	.188	8.258	.004
	Within Groups	6.750	297	.023		
	Total	6.938	298			
OCA_ING_ATT	Between Groups	.197	1	.197	10.389	.001
	Within Groups	5.798	305	.019		
	Total	5.995	306			
RED_ING_ATT	Between Groups	.006	1	.006	.123	.726
	Within Groups	15.305	305	.050		
	Total	15.312	306			

Means Plots

One Way

Warnings

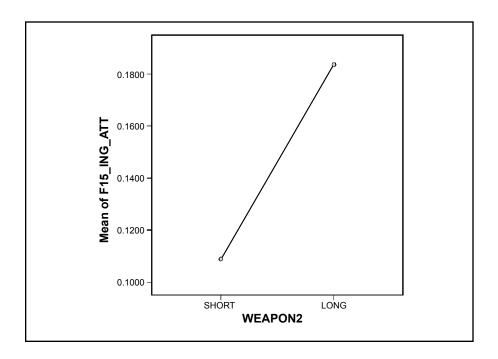
Post-hoc tests are not performed for F15_ING_ATT because there are fewer than three groups.

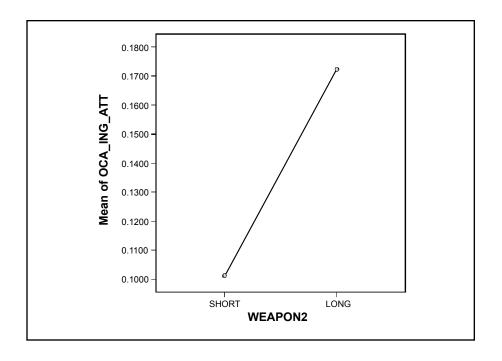
Post-hoc tests are not performed for OCA_ING_ATT because there are fewer than three groups.

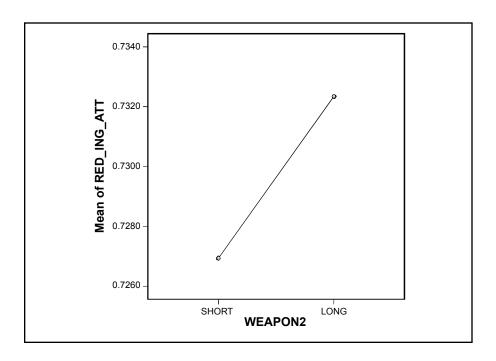
Post-hoc tests are not performed for RED_ING_ATT because there are fewer than three groups.

Descriptives

		N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		Mini- mum	Maxi- mum
						Lower Bound	Upper Bound		
F15_ING_ATT	SHORT	171	.108906	.1434054	.0109665	.087258	.130554	.0000	.7500
	LONG	68	.183603	.1804347	.0218809	.139929	.227278	.0000	.7500
	Total	239	.130159	.1580984	.0102265	.110013	.150305	.0000	.7500
OCA_ING_ATT	SHORT	172	.101257	.1307787	.0099718	.081573	.120941	.0000	.7500
	LONG	75	.172297	.1665932	.0192365	.133967	.210626	.0000	.7500
	Total	247	.122828	.1459749	.0092882	.104533	.141122	.0000	.7500
RED_ING_ATT	SHORT	172	.726931	.2277614	.0173666	.692651	.761212	.0000	1.1250
	LONG	75	.732348	.2296481	.0265175	.679511	.785185	.1111	1.0000
	Total	247	.728576	.2278820	.0144998	.700016	.757136	.0000	1.1250


Test of Homogeneity of Variances


	Levene Statistic	df1	df2	Sig.
F15_ING_ATT	3.983	1	237	.047
OCA_ING_ATT	5.856	1	245	.016
RED_ING_ATT	.025	1	245	.874


ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
F15_ING_ATT	Between Groups	.271	1	.271	11.332	.001
	Within Groups	5.677	237	.024		
	Total	5.948	238			
OCA_ING_ATT	Between Groups	.264	1	.264	12.971	.000
	Within Groups	4.978	245	.020		
	Total	5.242	246			
RED_ING_ATT	Between Groups	.002	1	.002	.029	.864
	Within Groups	12.773	245	.052		
	Total	12.775	246			

Means Plots

Correlations

Correlations

		THRT_AC	WEAPON2
THRT_AC	Pearson Correlation	1	.564(**)
	Sig. (2-tailed)		.000
	N	307	307
WEAPON2	Pearson Correlation	.564(**)	1
	Sig. (2-tailed)	.000	
	N	307	307

^{**} Correlation is significant at the 0.01 level (2-tailed).

A7. Aircraft and Weapons ANOVA

Author's original work using SPSS 12.0.1

Short Only

Descriptives

		N	Mean	Std.	Std. Error	95% Co	nfidence	Mini-	Maxi-
		14	IVICALI	Deviation	Old. Lifti	Interval t		mum	mum
						Lower	Upper		
	<u> </u>					Bound	Bound		
F15_ING_ ATT	MiG-23	34	.073214	.1245783	.0213650	.029747	.116682	.0000	.4286
ATT	MiG-29	147	.122143	.1503563	.0124012	.097634	.146652	.0000	.7500
	SU-27	56	.143764	.1309335	.0174967	.108700	.178828	.0000	.3750
	Total	237	.120233	.1435386	.0093238	.101864	.138601	.0000	.7500
OCA_ING_	MiG-23	34	.073214	.1245783	.0213650	.029747	.116682	.0000	.4286
ATT	MiG-29	147	.112801	.1375646	.0113461	.090377	.135225	.0000	.7500
	SU-27	56	.128776	.1143925	.0152863	.098142	.159411	.0000	.3750
	Total	237	.110896	.1311857	.0085214	.094109	.127684	.0000	.7500
RED_ING_	MiG-23	34	.751471	.2415154	.0414196	.667202	.835739	.0000	1.0000
ATT	MiG-29	147	.727339	.2156728	.0177884	.692183	.762495	.0000	1.1667
	SU-27	56	.678143	.2063667	.0275769	.622877	.733408	.2727	1.0000
	Total	237	.719177	.2178271	.0141494	.691301	.747052	.0000	1.1667

Test of Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
F15_ING_ATT	.424	2	234	.655
OCA_ING_ATT	.131	2	234	.877
RED_ING_ATT	.298	2	234	.743

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
F15_ING_ATT	Between Groups	.107	2	.053	2.625	.075
	Within Groups	4.756	234	.020		
	Total	4.863	236			
OCA_ING_ATT	Between Groups	.067	2	.033	1.954	.144
	Within Groups	3.995	234	.017		
	Total	4.062	236			
RED_ING_ATT	Between Groups	.140	2	.070	1.476	.231
	Within Groups	11.058	234	.047		
	Total	11.198	236			

Post-Hoc Tests

Multiple Comparisons

Tukey HSD

Dependent Variable	(I) THRT_AC	(J) THRT_AC	Mean Difference (I-J)	Std. Error	Sig.	95% Co Inte	
						Lower Bound	Upper Bound
F15_ING_	MiG-23	MiG-29	0489292	.0271293	.171	112920	.015062
ATT		SU-27	0705499	.0309946	.061	143658	.002558
	MiG-29	MiG-23	.0489292	.0271293	.171	015062	.112920
		SU-27	0216207	.0223869	.599	074425	.031184
	SU-27	MiG-23	.0705499	.0309946	.061	002558	.143658
		MiG-29	.0216207	.0223869	.599	031184	.074425
OCA_	MiG-23	MiG-29	0395863	.0248645	.251	098235	.019062
ING_ATT		SU-27	0555620	.0284070	.126	122566	.011442
	MiG-29	MiG-23	.0395863	.0248645	.251	019062	.098235
		SU-27	0159756	.0205179	.717	064372	.032420
	SU-27	MiG-23	.0555620	.0284070	.126	011442	.122566
		MiG-29	.0159756	.0205179	.717	032420	.064372
RED_ING_	MiG-23	MiG-29	.0241312	.0413693	.829	073448	.121710
ATT		SU-27	.0733278	.0472634	.269	038153	.184809
	MiG-29	MiG-23	0241312	.0413693	.829	121710	.073448
		SU-27	.0491966	.0341375	.322	031324	.129718
	SU-27	MiG-23	0733278	.0472634	.269	184809	.038153
		MiG-29	0491966	.0341375	.322	129718	.031324

Homogeneous Subsets

F15_ING_ATT

Tukey HSD

THRT_AC	N	Subset for alpha = .05		
		1	2	
MiG-23	34	.073214		
MiG-29	147	.122143	.122143	
SU-27	56		.143764	
Sig.		.169	.704	

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 55.482.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

OCA_ING_ATT

Tukey HSD

THRT_AC	N	Subset for alpha = .05
		1
MiG-23	34	.073214
MiG-29	147	.112801
SU-27	56	.128776
Sig.		.067

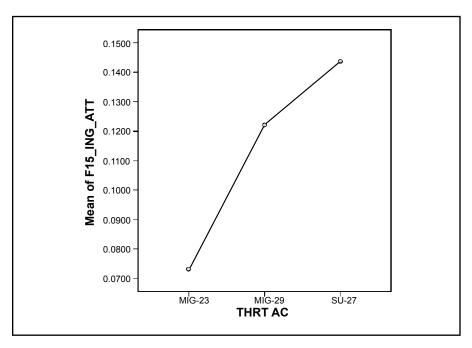
Means for groups in homogeneous subsets are displayed.

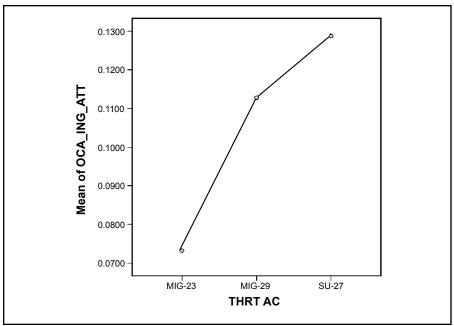
a Uses Harmonic Mean Sample Size = 55.482.

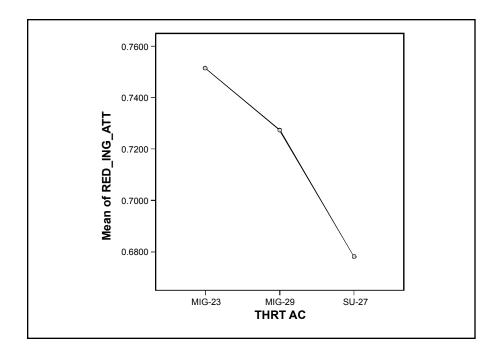
b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

RED_ING_ATT

Tukey HSD


THRT_AC	N	Subset for alpha = .05
		1
SU-27	56	.678143
MiG-29	147	.727339
MiG-23	34	.751471
Sig.		.180


Means for groups in homogeneous subsets are displayed.


a Uses Harmonic Mean Sample Size = 55.482.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Means Plots

T-test Short Only

Group Statistics

	THRT_AC	N	Mean	Std. Deviation	Std. Error Mean
F15_ING_ATT	MiG-29	147	.122143	.1503563	.0124012
	SU-27	56	.143764	.1309335	.0174967
OCA_ING_ATT	MiG-29	147	.112801	.1375646	.0113461
	SU-27	56	.128776	.1143925	.0152863
RED_ING_ATT	MiG-29	147	.727339	.2156728	.0177884
	SU-27	56	.678143	.2063667	.0275769

		Levene for Equ Varia	,			T-te	st for Equalit	y of Means		
		F	Sig.	t	Df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Interva	nfidence I of the rence
									Lower	Upper
F15_ING_ ATT	Equal variances assumed	.016	.899	948	201	.344	0216207	.0228171	0666123	.0233709
	Equal variances not assumed			-1.008	113.362	.316	0216207	.0214459	0641074	.0208659
OCA_ING_ ATT	Equal variances assumed	.194	.660	773	201	.441	0159756	.0206705	0567344	.0247831
	Equal variances not assumed			839	118.720	.403	0159756	.0190370	0536717	.0217204
RED_ING_ ATT	Equal variances assumed	.284	.595	1.470	201	.143	.0491966	.0334746	0168097	.1152030
	Equal variances not assumed			1.499	103.539	.137	.0491966	.0328164	0158828	.1142761

T-test MiG-29 Only

Group Statistics

	WEAPON2	N	Mean	Std. Deviation	Std. Error Mean
F15_ING_ATT	SHORT	147	.122143	.1503563	.0124012
	LONG	4	.048611	.0572654	.0286327
OCA_ING_ATT	SHORT	147	.112801	.1375646	.0113461
	LONG	4	.048611	.0572654	.0286327
RED_ING_ATT	SHORT	147	.727339	.2156728	.0177884
	LONG	4	.591667	.0687184	.0343592

		Levene for Equ Varia	ality of			T-to	est for Equal	ity of Means		
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Co Interva Diffe	
									Lower	Upper
F15_ING_ ATT	Equal variances assumed	1.817	.180	.973	149	.332	.0735323	.0755355	0757268	.2227915
	Equal variances not assumed			2.357	4.228	.074	.0735323	.0312029	0112888	.1583535
OCA_ING_ ATT	Equal variances assumed	1.552	.215	.929	149	.355	.0641895	.0691292	0724107	.2007898
	Equal variances not assumed			2.084	4.014	.105	.0641895	.0307988	0212033	.1495824
RED_ING_ ATT	Equal variances assumed	4.915	.028	1.253	149	.212	.1356727	.1083007	0783308	.3496762
	Equal variances not assumed			3.507	4.817	.018	.1356727	.0386909	.0350648	.2362806

T-test SU-27 Only

Group Statistics

	WEAPON2	N	Mean	Std. Deviation	Std. Error Mean
F15_ING_ATT	SHORT	56	.143764	.1309335	.0174967
	LONG	120	.165708	.1639277	.0149645
OCA_ING_ATT	SHORT	56	.128776	.1143925	.0152863
	LONG	120	.152881	.1470661	.0134252
RED_ING_ATT	SHORT	56	.678143	.2063667	.0275769
	LONG	120	.736021	.2264059	.0206679

		Levene'	s Test							
		for Equa	ality of			T-te	est for Equalit	ty of Means		
		Variar	nces							
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Cor Interval Differ	of the
									Lower	Upper
F15_ING_ ATT	Equal variances assumed	1.105	.295	879	174	.381	0219443	.0249651	0712177	.0273292
	Equal variances not assumed			953	132.200	.342	0219443	.0230233	0674859	.0235974
OCA_ING_ ATT	Equal variances assumed	1.337	.249	-1.083	174	.280	0241048	.0222651	0680493	.0198398
	Equal variances not assumed			-1.185	135.350	.238	0241048	.0203448	0643395	.0161300
RED_ING_ ATT	Equal variances assumed	.178	.674	-1.624	174	.106	0578785	.0356471	1282349	.0124780
	Equal variances not assumed			-1.679	117.068	.096	0578785	.0344623	1261288	.0103719

T-test MiG-29/Short versus Long SU-27

Group Statistics

	THRT_AC	N	Mean	Std. Deviation	Std. Error Mean
F15_ING_ATT	MiG-29	147	.122143	.1503563	.0124012
	SU-27	120	.165708	.1639277	.0149645
OCA_ING_ATT	MiG-29	147	.112801	.1375646	.0113461
	SU-27	120	.152881	.1470661	.0134252
RED_ING_ATT	MiG-29	147	.727339	.2156728	.0177884
	SU-27	120	.736021	.2264059	.0206679

		Levene' for Equa Variar	ality of			T-te	st for Equalit	ty of Means		
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference		nfidence I of the rence
									Lower	Upper
F15_ING_ ATT	Equal variances assumed	1.280	.259	-2.261	265	.025	0435650	.0192658	0814986	0056314
	Equal variances not assumed			-2.242	244.560	.026	0435650	.0194352	0818466	0052833
OCA_ING_ ATT	Equal variances assumed	.773	.380	-2.296	265	.022	0400804	.0174590	0744564	0057044
	Equal variances not assumed			-2.280	246.997	.023	0400804	.0175776	0747015	0054593
RED_ING_ ATT	Equal variances assumed	.003	.955	320	265	.749	0086818	.0271349	0621092	.0447455
	Equal variances not assumed			318	249.162	.750	0086818	.0272689	0623887	.0450250

T-test MiG-23 and MiG-29 Short versus Long SU-27 Group Statistics

	WEAPON2	N	Mean	Std. Deviation	Std. Error Mean
F15_ING_ATT	SHORT	181	.112952	.1467970	.0109113
	LONG	120	.165708	.1639277	.0149645
OCA_ING_ATT	SHORT	181	.105365	.1357762	.0100922
	LONG	120	.152881	.1470661	.0134252
RED_ING_ATT	SHORT	181	.731872	.2202539	.0163713
	LONG	120	.736021	.2264059	.0206679

		Levene	's Test							
		for Equ	ality of			T-te	st for Equali	ty of Means		
		Varia	/ariances							
		F	Sig.	Т	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Interva	nfidence I of the rence
									Lower	Upper
F15_ING_ ATT	Equal variances assumed	1.453	.229	-2.913	299	.004	0527561	.0181106	0883965	0171157
	Equal variances not assumed			-2.849	235.216	.005	0527561	.0185201	0892425	0162697
OCA_ING_ ATT	Equal variances assumed	.731	.393	-2.875	299	.004	0475165	.0165255	0800375	0149956
	Equal variances not assumed			-2.829	240.683	.005	0475165	.0167955	0806015	0144316
RED_ING_ ATT	Equal variances assumed	.055	.815	158	299	.874	0041489	.0262191	0557462	.0474484
	Equal variances not assumed			157	250.089	.875	0041489	.0263663	0560773	.0477795

APPENDIX A

A8.T-testAuthor's original work using SPSS 12.0.1

Group Statistics

	WEAPON2	N	Mean	Std. Deviation	Std. Error Mean
F15_ING_ATT	SHORT	181	.112952	.1467970	.0109113
	LONG	120	.165708	.1639277	.0149645
OCA_ING_ATT	SHORT	181	.105365	.1357762	.0100922
	LONG	120	.152881	.1470661	.0134252
RED_ING_ATT	SHORT	181	.731872	.2202539	.0163713
	LONG	120	.736021	.2264059	.0206679

		for Equ	e's Test ality of inces			T-tes	st for Equality	y of Means		
		F	Sig.	Т	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Interva	nfidence Il of the rence
									Lower	Upper
F15_ING_ ATT	Equal variances assumed	1.453	.229	-2.913	299	.004	0527561	.0181106	0883965	0171157
	Equal variances not assumed			-2.849	235.216	.005	0527561	.0185201	0892425	0162697
OCA_ING_ ATT	Equal variances assumed	.731	.393	-2.875	299	.004	0475165	.0165255	0800375	0149956
	Equal variances not assumed			-2.829	240.683	.005	0475165	.0167955	0806015	0144316
RED_ING_ ATT	Equal variances assumed	.055	.815	158	299	.874	0041489	.0262191	0557462	.0474484
	Equal variances not assumed			157	250.089	.875	0041489	.0263663	0560773	.0477795

T-test

Group Statistics

	LIGHT	N	Mean	Std. Deviation	Std. Error Mean
F15_ING_ATT	DAY	178	.150025	.1637746	.0122754
	NIGHT	123	.110772	.1407805	.0126937
OCA_ING_ATT	DAY	178	.138753	.1481119	.0111015
	NIGHT	123	.103403	.1306123	.0117769
RED_ING_ATT	DAY	178	.717010	.2134606	.0159995
	NIGHT	123	.757429	.2334584	.0210502

		Levene	's Test											
		for Equ	ality of	T-test for Equality of Means										
		Varia	nces											
		F	Sig.	t	df	Sig.	Mean Difference	Std. Error		nfidence I of the rence				
						,			Lower	Upper				
F15_ING_ ATT	Equal variances assumed	4.849	.028	2.163	299	.031	.0392530	.0181513	.0035326	.0749734				
	Equal variances not assumed			2.223	285.050	.027	.0392530	.0176584	.0044957	.0740103				
OCA_ING_ ATT	Equal variances assumed	2.562	.111	2.135	299	.034	.0353498	.0165600	.0027610	.0679387				
	Equal variances not assumed			2.184	281.786	.030	.0353498	.0161845	.0034920	.0672077				
RED_ING_ ATT	Equal variances assumed	1.719	.191	-1.554	299	.121	0404192	.0260110	0916070	.0107686				
	Equal variances not assumed			-1.529	246.883	.128	0404192	.0264405	0924968	.0116584				

A9. Red Tactics Pearson Correlation Test

Author's original work using SPSS 12.0.1

Correlations

		TACTIC2	EA2	REGEN	RXN_LVL	MAX_LIVE_ GRPS	SAM_LVL	SAM_ ROE2	REC	BIG_ CROW2
TACTIC2	Pearson Correlation	1	.809(**)	586(**)	.736(**)	.635(**)	.710(**)	.879(**)	.778(**)	.827(**)
	Sig. (2-tailed)		.000	.000	.000	.000	.000	.000	.000	.000
	N	301	301	301	301	301	301	210	301	174
EA2	Pearson Correlation	.809(**)	1	501(**)	.619(**)	.571(**)	.669(**)	.760(**)	.698(**)	.796(**)
	Sig. (2-tailed)	.000		.000	.000	.000	.000	.000	.000	.000
	N	301	301	301	301	301	301	210	301	174
REGEN	Pearson Correlation	586(**)	501(**)	1	521(**)	302(**)	559(**)	629(**)	662(**)	589(**)
	Sig. (2-tailed)	.000	.000		.000	.000	.000	.000	.000	.000
	N	301	301	301	301	301	301	210	301	174
RXN_LVL	Pearson Correlation	.736(**)	.619(**)	521(**)	1	.727(**)	.509(**)	.768(**)	.699(**)	.773(**)
	Sig. (2-tailed)	.000	.000	.000		.000	.000	.000	.000	.000
	N	301	301	301	301	301	301	210	301	174
MAX_ LIVE_ GRPS	Pearson Correlation	.635(**)	.571(**)	302(**)	.727(**)	1	.317(**)	.771(**)	.614(**)	.747(**)
	Sig. (2-tailed)	.000	.000	.000	.000		.000	.000	.000	.000
	N	301	301	301	301	301	301	210	301	174
SAM_LVL	Pearson Correlation	.710(**)	.669(**)	559(**)	.509(**)	.317(**)	1	.634(**)	.580(**)	.736(**)
	Sig. (2-tailed)	.000	.000	.000	.000	.000		.000	.000	.000
	N	301	301	301	301	301	301	210	301	174
SAM_ ROE2	Pearson Correlation	.879(**)	.760(**)	629(**)	.768(**)	.771(**)	.634(**)	1	.897(**)	.929(**)
	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000		.000	.000
	N	210	210	210	210	210	210	210	210	137
REC	Pearson Correlation	.778(**)	.698(**)	662(**)	.699(**)	.614(**)	.580(**)	.897(**)	1	.913(**)
	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.000		.000
	N	301	301	301	301	301	301	210	301	174
BIG_ CROW2	Pearson Correlation	.827(**)	.796(**)	589(**)	.773(**)	.747(**)	.736(**)	.929(**)	.913(**)	1
	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.000	.000	
	N	174	174	174	174	174	174	137	174	174

^{**} Correlation is significant at the 0.01 level (2-tailed).

A10. Force Ratio Pearson Correlation Test

Author's original work using SPSS 12.0.1

Correlations

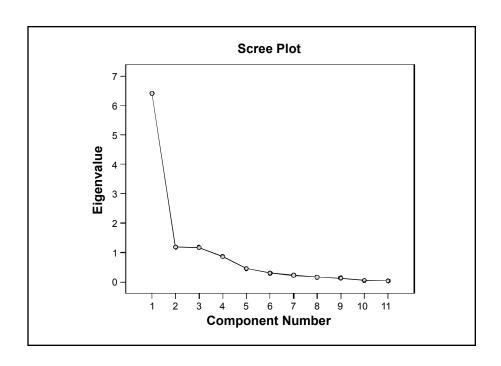
		F15_ING_ ATT	RED_ING_ ATT	LOG_F15_ FLOWN_ RATIO	F15_FLOWN_ RATIO	OCA_F15_ FL	RED_TOT_ FTR_FL
F15_ING_ATT	Pearson Correlation	1	253(**)	297(**)	270(**)	180(**)	.219(**)
	Sig. (2-tailed)		.000	.000	.000	.002	.000
	N	299	299	299	299	299	299
RED_ING_ATT	Pearson Correlation	253(**)	1	.396(**)	.351(**)	.097	411(**)
	Sig. (2-tailed)	.000		.000	.000	.094	.000
	N	299	307	299	307	299	307
LOG_F15_ FLOWN_RATIO	Pearson Correlation	297(**)	.396(**)	1	.966(**)	.501(**)	773(**)
	Sig. (2-tailed)	.000	.000		.000	.000	.000
	N	299	299	299	299	299	299
F15_FLOWN_ RATIO	Pearson Correlation	270(**)	.351(**)	.966(**)	1	.431(**)	644(**)
	Sig. (2-tailed)	.000	.000	.000		.000	.000
	N	299	307	299	307	299	307
OCA_F15_FL	Pearson Correlation	180(**)	.097	.501(**)	.431(**)	1	.103
	Sig. (2-tailed)	.002	.094	.000	.000		.077
	N	299	299	299	299	299	299
RED_TOT_ FTR_FL	Pearson Correlation	.219(**)	411(**)	773(**)	644(**)	.103	1
	Sig. (2-tailed)	.000	.000	.000	.000	.077	
	N	299	307	299	307	299	307

^{**} Correlation is significant at the 0.01 level (2-tailed).

A11. Independent Variable Factor Analysis

Author's original work using SPSS 12.0.1

Communalities


	Initial	Extraction
LOG_F15_FLOWN_ RATIO	1.000	.952
THRT_AC2	1.000	.848
WEAPON2	1.000	.859
TACTIC2	1.000	.812
EA2	1.000	.791
RXN_LVL	1.000	.808
MAX_LIVE_GRPS	1.000	.784
SAM_ROE2	1.000	.932
REC	1.000	.911
BIG_CROW2	1.000	.935
LIGHT	1.000	.992

Extraction Method: Principal Component Analysis.

Total Variance Explained

Component	In	itial Eigenva	alues	Extrac	tion Sums o		Rotati	on Sums of			
		_ % of Cumulative			Loadings		Loadings				
	Total	1		Total	% of	Cumulative	Total	% of	Cumulative		
		Variance	%		Variance	%		Variance	%		
1	6.407	58.241	58.241	6.407	58.241	58.241	5.679	51.627	51.627		
2	1.188	10.797	69.038	1.188	10.797	69.038	1.860	16.913	68.540		
3	1.170	10.639	79.676	1.170	10.639	79.676	1.069	9.718	78.258		
4	.860	7.814	87.491	.860	7.814	87.491	1.016	9.232	87.491		
5	.454	4.132	91.622								
6	.302	2.741	94.363								
7	.226	2.052	96.415								
8	.166	1.508	97.923								
9	.134	1.216	99.139								
10	.056	.508	99.647								
11	.039	.353	100.000								

Extraction Method: Principal Component Analysis.

Component Matrix (a)

		Comp	onent	
	1	2	3	4
LOG_F15_FLOWN_RATIO	.072	.586	.587	509
THRT_AC2	.650	413	.454	.222
WEAPON2	.516	353	.673	.123
TACTIC2	.899	.042	025	028
EA2	.844	.139	.021	242
RXN_LVL	.845	.212	219	024
MAX_LIVE_GRPS	.857	.022	187	.120
SAM_ROE2	.959	.032	102	.024
REC	.941	.055	148	.016
BIG_CROW2	.962	.047	078	.010
LIGHT	105	.690	.209	.679

Extraction Method: Principal Component Analysis. a 4 components extracted.

APPENDIX A

Rotated Component Matrix (a)

		Comp	onent	
	1	2	3	4
LOG_F15_FLOWN_RATIO	.028	.040	.970	.092
THRT_AC2	.369	.839	084	042
WEAPON2	.194	.896	.129	032
TACTIC2	.852	.284	.060	046
EA2	.815	.194	.267	134
RXN_LVL	.896	.037	.041	.031
MAX_LIVE_GRPS	.853	.196	134	.025
SAM_ROE2	.927	.267	018	031
REC	.930	.213	028	030
BIG_CROW2	.926	.275	.012	027
LIGHT	041	051	.089	.990

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

Component Transformation Matrix

Component	1	2	3	4
1	.928	.367	.037	052
2	.209	497	.559	.630
3	306	.743	.565	.186
4	036	.258	606	.752

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

a Rotation converged in 5 iterations.

Component Score Coefficient Matrix

		Comp	onent	
	1	2	3	4
LOG_F15_FLOWN_RATIO	019	021	.918	042
THRT_AC2	107	.565	128	.042
WEAPON2	169	.641	.076	.023
TACTIC2	.145	.010	.033	014
EA2	.151	069	.251	141
RXN_LVL	.218	186	.016	.050
MAX_LIVE_GRPS	.172	042	159	.080
SAM_ROE2	.170	016	045	.014
REC	.184	058	051	.012
BIG_CROW2	.168	011	017	.013
LIGHT	.023	.042	053	.994

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization. Component Scores.

Component Score Covariance Matrix

Component	1	2	3	4
1	1.000	.000	.000	.000
2	.000	1.000	.000	.000
3	.000	.000	1.000	.000
4	.000	.000	.000	1.000

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. Component Scores.

A12. Final Data Set TestingAuthor's original work using SPSS 12.0.1

Correlations

BIG_ CROW2	.014	.859	174	.064	.400	174	.093	.223	174	070	.356	174	.579	000:
REC CI	041	.524	239	.177	900:	239	.011	.870	239	. 078	.227	239	.521	000
<u> </u>	0.	.55	8	₩.	ŏ.	8	0.	96	8	0.	- 2	8	, 55 , \$, ,
SAM_ ROE2	022	.794	148	(*)	.037	148	.074	369	148	057	.491	148	.531	000
SAM_ LVL	.025	.702	239	£. *	.038	239	.017	.799	239	053	.411	239	.517	000
MAX_ LIVE_ GRPS	083	.201	239	.102	.116	239	078	.227	239	040	.542	239	.346	000.
RXN_ LVL	900:-	.924	239	.112	.084	239	035	.592	239	023	.723	239	.343	000.
RE SE N2	046	.479	239	.113	.082	239	.015	.816	239	.046	.476	239	.307	000.
EA2	.047	.473	239	860.	.132	239	780.	.182	239	060:-	.164	239	.358	000
TAC- TIC2	012	.854	239	.152	.019	239	.044	.501	239	101	.120	239	.506	000
WEAP- ON2	.031	.631	239	.214 (**)	.001	239	.013	.844	239	118	690:	239	1.000	000.
THRT_ AC2	.031	.631	239	.214	.001	239	.013	.844	239	118	690:	239	-	
LIGHT	.214 (**)	.001	239	095	441	239	.122	.061	239	-		239	118	690.
RED_ ING_ ATT	.368	000	239	241 (**)	000	239	-		239	.122	.061	239	.013	.844
F15_ ING_ ATT	304 (**)	000:	239	-		239	241 (**)	000:	239	095	<u>+</u> .	239	.214	.00
LOG_ F15_ FLOWN_ RATIO	-		239	304	000:	239	.368	000:	239	214		239	.031	.631
	LOG_ F15_ Pearson FLOWN_ Correlation RATIO	Sig. (2-tailed)	·	Pearson Correlation	Sig. (2-tailed)	z	Pearson Correlation	Sig. (2-tailed)	z	Pearson Correlation	Sig. (2-tailed)	z	Pearson Correlation	Sig.
	LOG_ F15_ FLOWN_ RATIO			F15_ ING_ ATT			RED_ ING_ ATT			LIGHT			THRT_ AC2	

Correlations (continued)

							_						_				
BIG_ CROW2	174	.579 (**)	000	174	.827	000	174	.796 (**)	000.	174	.589	000.	174	.773	000	174	.747
REC	239	.521	000	239	.821	000	239	.740	000	239	.656	000	239	.707.	000	239	.640
SAM_ ROE2	148	.531	000.	148	.915	000.	148	.820	000.	148	.623	000.	148	.793	000.	148	.812
SAM_ LVL	239	.517	000.	239	.7.7.	000.	239	.629	000.	239	.544 (**)	000.	239	.593	000.	239	.416
MAX_ LIVE_ GRPS	239	.346	000.	239	.668	000.	239	.621	000.	239	.314	000.	239	.763	000.	239	-
RXN_ LVL	239	.343	000	239	.728	000	239	.633	000	239	.490	000	239	-		239	.76
R G E	239	.307	000	239	.537	000	239	4.*)	000	239	-		239	.490	000	239	.314
EA2	239	.358	000	239	.807	000.	239	-		239	<u>4</u> *	000.	239	.633	000	239	.621
TAC- TIC2	239	.506	000	239	-		239	.807	000	239	.537	000.	239	.728	000	239	.668
WEAP- ON2	239	-		239	.506	000	239	.358	000	239	.307	000.	239	.343	000	239	.346
THRT_ AC2	239	1.000	000.	239	.506	000.	239	.358	000.	239	.307	000.	239	.343	000.	239	.346
LIGHT	239	118	690.	239	101	.120	239	090	.164	239	.046	.476	239	023	.723	239	040
RED_ ING_ ATT	239	.013	.844	239	.044	.501	239	.087	.182	239	.015	.816	239	035	.592	239	078
F15_ ING_ ATT	239	.214 (**)	.001	239	.152(*)	.019	239	860.	.132	239	.113	.082	239	.112	.084	239	.102
LOG_ F15_ FLOWN_ RATIO	239	.031	.631	239	012	.854	239	.047	.473	239	046	479	239	900:-	.924	239	083
	z	Pearson Correlation	Sig. (2-tailed)	z	TACTIC2 Pearson Correlation	Sig. (2-tailed)		Pearson Correlation	Sig. (2-tailed)	z	Pearson Correlation	Sig. (2-tailed)	z	Pearson Correlation	Sig. (2-tailed)	z	Pearson Correlation
		WEAP- ON2			TACTIC2			EA2			REGEN2			RXN_ LVL			MAX_ LIVE_ GRPS

Correlations (continued)

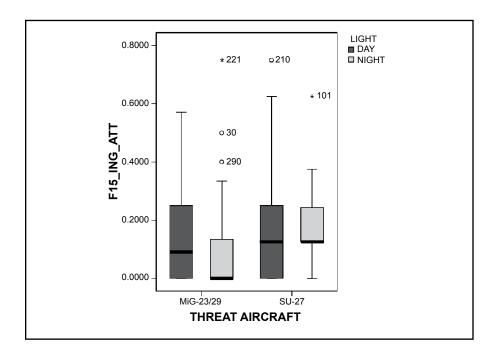
		LOG_ F15_ FLOWN_ RATIO	F15_ ING_ ATT	RED_ ING_ ATT	LIGHT	THRT_ AC2	WEAP- ON2	TAC- TIC2	EA2	R G N 2	RXN_ LVL	MAX_ LIVE_ GRPS	SAM_ LVL	SAM_ ROE2	REC	BIG_ CROW2
	Sig. (2-tailed)	.201	.116	.227	.542	000.	000	000.	000.	000.	000		000	000	000	000.
	z	239	239	239	239	239	239	239	239	239	239	239	239	148	239	174
SAM_ LVL	Pearson Correlation	.025	.134(*)	.017	053	.517	.517	.;; (**)	.629	.544	.593 (**)	.416	-	.852	.747	.736
	Sig. (2-tailed)	.702	.038	.799	.411	000	000	000.	000.	000	000.	000.		000	000	000.
	z	239	239	239	239	239	239	239	239	239	239	239	239	148	239	174
SAM_ ROE2	Pearson Correlation	022	.171(*)	.074	057	.531	.531	.915	.820	.623	.793 (**)	.812	.852	-	.951	.929 (**)
	Sig. (2-tailed)	.794	.037	.369	.491	000	000	000.	000	000.	000	000	000		000	000
	z	148	148	148	148	148	148	148	148	148	148	148	148	148	148	137
REC	Pearson Correlation	041	.177	.011	078	.521	.521	.821	.740	.656	.707.	.640	.747	.951	-	.913 (**)
	Sig. (2-tailed)	.524	900.	.870	.227	000	000.	000	000.	000	000.	000.	000	000		000.
	z	239	239	239	239	239	239	239	239	239	239	239	239	148	239	174
BIG_ CROW2	Pearson Correlation	.014	.064	.093	070	.579 (**)	.579 (**)	.827	.796	(**)	.773	.747	.736	.929	.913	-
	Sig. (2-tailed)	.859	.400	.223	.356	000	000	000.	000.	000.	000.	000.	000	000	000	
	Z	174	174	174	174	174	174	174	174	174	174	174	174	137	174	174

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

T-test

Group Statistics

	WEAPON2	N	Mean	Std. Deviation	Std. Error Mean
F15_ING_ATT	SHORT	171	.108906	.1434054	.0109665
	LONG	67	.186343	.1803651	.0220351
RED_ING_ATT	SHORT	172	.726205	.2266806	.0172842
	LONG	74	.733235	.2310861	.0268632

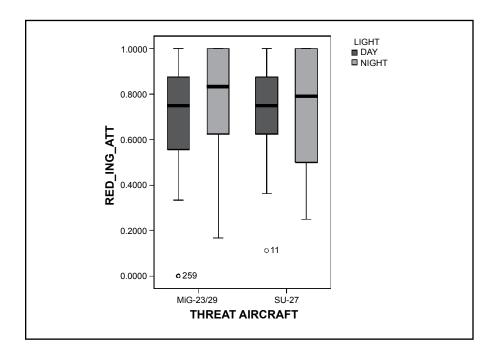

		for Equ	e's Test uality of unces			T-te	est for Equali	ty of Means		
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference		nfidence Il of the rence
									Lower	Upper
F15_ING_ ATT	Equal variances assumed	3.940	.048	-3.475	236	.001	0774374	.0222873	1213449	0335298
	Equal variances not assumed			-3.146	100.354	.002	0774374	.0246132	1262671	0286076
RED_ING_ ATT	Equal variances assumed	.078	.780	222	244	.825	0070307	.0316984	0694680	.0554066
	Equal variances not assumed			220	136.002	.826	0070307	.0319433	0702006	.0561392

THRT_AC2*LIGHT

Case Processing Summary

	THRT_AC2	LIGHT			С	ases		
			\	/alid	М	issing	٦	Γotal
			N	Percent	N	Percent	N	Percent
F15_ING_ ATT	MiG-23/29	DAY	99	100.0%	0	.0%	99	100.0%
		NIGHT	72	100.0%	0	.0%	72	100.0%
	SU-27	DAY	48	100.0%	0	.0%	48	100.0%
		NIGHT	20	100.0%	0	.0%	20	100.0%

F15_ING_ATT



THRT_AC2*LIGHT

Case Processing Summary

	THRT_AC2				С	ases		
			\	/alid	М	issing	٦	Γotal
		LIGHT	N	Percent	N	Percent	N	Percent
RED_ING_ ATT	MiG-23/29	DAY	99	100.0%	0	.0%	99	100.0%
		NIGHT	72	100.0%	0	.0%	72	100.0%
	SU-27	DAY	48	100.0%	0	.0%	48	100.0%
		NIGHT	20	100.0%	0	.0%	20	100.0%

RED_ING_ATT

DAY-NIGHT T-test N=239

Group Statistics

	LIGHT	N	Mean	Std. Deviation	Std. Error Mean
F15_ING_ATT	DAY	147	.141996	.1647666	.0135897
	NIGHT	92	.111244	.1456968	.0151899
RED_ING_ATT	DAY	147	.711131	.2143393	.0176784
	NIGHT	92	.765910	.2253483	.0234942

			's Test							
		for Equ Varia	•			T-te	st for Equali	ty of Means		
		F	Sig.	Т	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference		nfidence I of the rence
									Lower	Upper
F15_ING_ ATT	Equal variances assumed	3.347	.069	1.467	237	.144	.0307522	.0209665	0105523	.0720567
	Equal variances not assumed			1.509	210.799	.133	.0307522	.0203817	0094259	.0709303
RED_ING_ ATT	Equal variances assumed	.649	.421	-1.885	237	.061	0547795	.0290643	1120369	.0024779
	Equal variances not assumed			-1.863	186.046	.064	0547795	.0294024	1127845	.0032255

DAY-NIGHT T-test Short MiG-23/29 N=171

Group Statistics

	LIGHT	N	Mean	Std. Deviation	Std. Error Mean
F15_ING_ATT	DAY	99	.121074	.1472703	.0148012
	NIGHT	72	.092175	.1371633	.0161648
RED_ING_ATT	DAY	99	.698647	.2210243	.0222138
	NIGHT	72	.774182	.2133213	.0251402

		for Equ	e's Test uality of unces			T-te	est for Equal	ity of Means		
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	Interva	nfidence I of the rence
									Lower	Upper
F15_ING_ ATT	Equal variances assumed	1.528	.218	1.304	169	.194	.0288997	.0221660	0148583	.0726576
l,										
	Equal variances not assumed			1.319	158.992	.189	.0288997	.0219175	0143874	.0721867
RED_ING_ ATT	not assumed	.083	.773	1.319	158.992 169	.189	.0288997	.0219175	0143874 1421363	.0721867

DAY-NIGHT T-test Long SU-27 N=68

Group Statistics

	LIGHT	N	Mean	Std. Deviation	Std. Error Mean
F15_ING_ATT	DAY	48	.185148	.1904875	.0274945
	NIGHT	20	.179895	.1581954	.0353736
RED_ING_ATT	DAY	48	.736878	.1996123	.0288115
	NIGHT	20	.736131	.2682850	.0599903

		for Equ	e's Test uality of unces			T-	test for Equa	lity of Means		
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Col Interva Differ	I of the
									Lower	Upper
F15_ING_ ATT	Equal variances assumed	1.332	.253	.109	66	.914	.0052536	.0483800	0913401	.1018473
	Equal variances not assumed			.117	42.606	.907	.0052536	.0448022	0851228	.0956300
RED_ING_ ATT	Equal variances assumed	5.214	.026	.013	66	.990	.0007468	.0589709	1169925	.1184860
	Equal variances not assumed			.011	28.170	.991	.0007468	.0665503	1355384	.1370319

Correlations Short MiG-23/29 N=171

Correlations

SAM_ REC BIG_ ROE2 CROW2	016065001	.872 399 .989	110 171 123	.073 .074	.339 .374	110 171 123	.105 .043 .127	.575 772.	110 171 123	.001016 .008	.991 .833	110 171 123	_
SAM_ LVL	.012	.880	171	.036	.640	171	.014	.859	171	.010	968.	171	
MAX_ LIVE_ GRPS	081	.291	171	004	096.	171	030	669.	171	016	.840	171	
RXN_ LVL	008	.915	171	.026	.740	171	.018	.816	171	900:-	939	171	
RE GE	101	.188	171	.058	.447	171	.036	.641	171	720.	.320	171	
EA2	.040	909.	171	.04	.592	171	.008	.915	171	016	.836	171	
TAC- TIC2	.003	.971	171	.031	989.	171	.019	808.	171	.003	.970	171	
WEAP- ON2	·(a)		171	·(a)		171	·(a)		171	.(a)		171	
THRT_ AC2	.(a)		171	·(a)		171	·(a)		171	·(a)		171	
LIGHT	.196	.010	171	100	.194	171	.170	.026	171	-		171	
RED_ ING_ ATT	.386	000.	171	304	000.	171	-		171	.170(*)	.026	171	
F15_ ING_ ATT	366	000.	171	-		171	304	000	171	100	.194	171	
LOG_ F15_ FLOWN_ RATIO	-		171	366	000.	171	.386	000.	171	.196(*)	.010	171	
	Pearson _ Correlation		z	Pearson Correlation	Sig. (2-tailed)	. z	Pearson Correlation	Sig. (2-tailed)	Z	Pearson Correlation	Sig. (2-tailed)	Z	Dagreon
	LOG_ F15_ FLOWN_ RATIO			F15_ ING_ ATT			RED_ ING_ ATT			LIGHT			THET

Correlations (continued)

_ 	3				· · ·	0	~	^ ^	0	~	o c	0		- 2	0		
BIG_ CROW2	123	.(a)	•	123	.778	000	123	.787	000	123	.549	000	123	.775	000.	123	.759
REC	171	·(a)		171	.790	000.	171	.762	000	171	.648	000	171	.670	000	171	.623
SAM_ ROE2	110	·(a)		110	.910	000.	110	.775	000	110	.589	000	110	.768	000	110	.749
SAM_ LVL	171	·(a)		171	.801	000	171	.4*)	000	171	.495	000	171	009· (**)	000	171	217.
MAX_ LIVE_ GRPS	171	.(a)		171	.644	000.	171	.582	000	171	.274	000	171	.655	000	171	-
RXN_ LVL	171	.(a)		171	.726	000.	171	.610	000	171	.418	000	171	-		171	.655
RE GE N2	171	.(a)		171	.536	000.	171	.449	000	171	-		171	.418	000	171	.274
EA2	171	.(a)		171	.759	000.	171	-		171	(**)	000	171	.610	000.	171	.582
TAC- TIC2	171	.(a)		171	-		171	.759	000	171	.536	000	171	.726	000	171	.644
WEAP- ON2	171	.(a)		171	.(a)		171	.(a)		171	.(a)		171	.(a)		171	.(a)
THRT_ AC2	171	.(a)		171	·(a)		171	·(a)		171	·(a)		171	.(a)		171	(a)
LIGHT	171	·(a)		171	.003	.970	171	016	.836	171	.077	.320	171	900:-	.939	171	016
RED_ ING_ ATT	171	.(a)		171	.019	808.	171	800.	.915	171	980.	.641	171	.018	.816	171	030
F15_ ING_ ATT	171	.(a)		171	.031	989.	171	.041	.592	171	.058	.447	171	.026	.740	171	004
LOG_ F15_ FLOWN_ RATIO	171	·(a)		171	.003	.971	171	.040	909.	171	101	.188	171	008	.915	171	081
	z	Pearson Correlation	Sig. (2-tailed)	Z	Pearson Correlation	Sig. (2-tailed)	z	EA2 Pearson .040 Correlation	Sig. (2-tailed)	·	Pearson Correlation	Sig. (2-tailed)	Z	Pearson Correlation	Sig. (2-tailed)	z	Pearson
		WEAP- ON2			TACTIC2			EA2			REGEN2			RXN_ LVL			MAX_ LIVE_

Correlations (continued)

		LOG_ F15_ FLOWN_ RATIO	F15_ ING_ ATT	RED_ ING_ ATT	LIGHT	THRT_ AC2	WEAP- ON2	TAC- TIC2	EA2	RE GE N2	RXN_ LVL	MAX_ LIVE_ GRPS	SAM_ LVL	SAM_ ROE2	REC	BIG_ CROW2
	Sig. (2-tailed)	.291	096°	669	.840			000	000	000	000.		000	000	000.	000.
	z	171	171	171	171	171	171	171	171	171	171	171	171	110	171	123
SAM_ LVL	SAM_ Pearson LVL Correlation	.012	980.	.014	.010	·(a)	·(a)	.801	.660	.495	009.	.412	-	.866	.717.	.689 (**)
	Sig. (2-tailed)	.880	.640	.859	968.			000	000.	000.	000.	000.		000.	000.	000
		171	171	171	171	171	171	171	171	171	171	171	171	110	171	123
SAM_ ROE2	Pearson Correlation	016	.073	.105	001	.(a)	.(a)	.910	.775	.589	.768	.749	.866	-	.924	.886
	Sig. (2-tailed)	.872	.450	.277	.991			000	000	000	000.	000.	000.		000.	000
	z	110	110	110	110	110	110	110	110	110	110	110	110	110	110	100
REC	Pearson Correlation	065	.074	.043	016	·(a)	·(a)	.790	.762	.648	.43)	.623	117.	.924	-	.857
	Sig. (2-tailed)	.399	.339	.575	.833			000	000	000	000.	000.	000.	000.		000.
	z	171	171	171	171	171	171	171	171	171	171	171	171	110	171	123
BIG_ CROW2	Pearson Correlation	001	081	.127	800.	.(a)	·(a))	.787	.549	.775	.759	(**)	.886	.857	-
	Sig. (2-tailed)	686.	.374	.161	.929			000	000.	000.	000	000	000.	000	000.	
	Z	123	123	123	123	123	123	123	123	123	123	123	123	100	123	123
*	interior in the interior		3	0,	4-11-											

^{**} Correlation is significant at the 0.01 level (2-tailed).

* Correlation is significant at the 0.05 level (2-tailed).
a Cannot be computed because at least one of the variables is constant.

Correlations Long SU-27 N=68

Correlations

			_			_			_			_		
BIG_ CROW2	165	.248	51	.145	.312	51	186	.190	51	071	.619	51	.(a)	
REC	081	.514	89	.104	.397	89	139	.260	89	037	.767	89	·(a)	
SAM_ ROE2	140	.401	38	.130	.436	38	240	.147	38	900.	.970	38	.(a)	
SAM_ LVL	.(a)		89	.(a)		89	·(a)		89	.(a)		89	.(a)	
MAX_ LIVE_ GRPS	146	.236	89	920.	.539	89	190	.121	89	.031	.804	89	.(a)	
RXN_ LVL	048	969.	89	620.	.524	89	202	860.	89	060.	.466	89	.(a)	
RE GE N2	.185	.132	89	.038	.757	89	<u>.</u>	.369	89	.161	.189	89	·(a)	
EA2	.033	.788	89	012	.922	89	.286	.018	89	149	.226	89	.(a)	
TAC- TIC2	141	.252	89	860.	.429	89	.110	.371	89	198	.106	89	.(a)	
WEAP- ON2	·(a)		89	·(a)		89	.(a)		89	.(a)		89	.(a)	
THRT_ AC2	.(a)		89	.(a)		89	.(a)		89	.(a)		89	·(a)	
LIGHT	.292	.016	89	013	.914	89	002	066.	89	-		89	.(a)	
RED_ ING_ ATT	.316	600.	89	144	.242	89	-		89	002	066.	89	.(a)	
F15_ ING_ ATT	223	.068	89	-		89	144	.242	89	013	.914	89	.(a)	
LOG_ F15_ FLOWN_ RATIO	-		89	223	890:	89	.316	600	89	.292(*)	.016	89	·(a)	
	Pearson Correlation	Sig. (2-tailed)	z	Pearson Correlation	Sig. (2-tailed)	Z	Pearson Correlation	Sig. (2-tailed)	Z	Pearson Correlation	Sig. (2-tailed)	Z	Pearson Correlation	Sig. (2-tailed)
	0G =15_ =LOWN_ RATIO			-15_ NG_ ATT			AED_ NG_ ATT_			-IGHT			rhrt_ AC2	

Correlations (continued)

BIG_ CROW2	51	.(a)		51	.719	000.	51	.674 (**)	000.	51	.379	900.	51	.739	000	51	.726
REC	89	·(a)		89	.656	000.	89	.489	000	89	.361	.002	89	.642	000.	89	.596
SAM_ ROE2	38	.(a)		38	.725	000.	38	.651	000	38	.449	.005	38	.884	000	38	.946
SAM_ LVL	89	.(a)		89	·(a)												
MAX_ LIVE_ GRPS	89	.(a)		89	.595	000.	89	.573	000	89	.216	.077	89	.922	000	89	-
RXN_ LVL	89	.(a)		89	.562	000	89	.509	000.	89	.578	000	89	-		89	.922
RE GE N2	89	.(a)		89	.161	.190	89	920.	.537	89	-		89	.578	000	89	.216
EA2	89	.(a)		89	.828	000	89	-		89	920.	.537	89	.509	000.	89	.573
TAC- TIC2	89	.(a)		89	-		89	.828	000	89	.161	.190	89	.562	000	89	.595
WEAP- ON2	89	·(a)		89	.(a)	•	89	.(a)		89	.(a)		89	.(a)		89	·(a)
THRT_ AC2	89	.(a)		89	·(a)												
LIGHT	89	.(a)		89	198	.106	89	149	.226	89	.161	.189	89	060	.466	89	.031
RED_ ING_ ATT	89	.(a)		89	.110	.371	89	.286(*)	.018	89	11.	.369	89	202	860.	89	190
F15_ ING_ ATT	89	.(a)		89	860.	.429	89	012	.922	89	.038	.757	89	620.	.524	89	.076
LOG_ F15_ FLOWN_ RATIO	89	.(a)		89	141	.252	89	.033	.788	89	.185	.132	89	048	.695	89	146
	z	Pearson Correlation	Sig. (2-tailed)	z	Pearson Correlation	Sig. (2-tailed)	·Z	Pearson Correlation	Sig. (2-tailed)	z	Pearson Correlation	Sig. (2-tailed)	z	Pearson Correlation	Sig. (2-tailed)	z	Pearson Correlation
		WEAP- ON2			TACTIC2			EA2			REGEN2			RXN_ LVL			MAX_ LIVE_ GRPS

Correlations (continued)

		LOG_ F15_ FLOWN_ RATIO	F15_ ING_ ATT	RED_ ING_ ATT	LIGHT	THRT_ AC2	WEAP- ON2	TAC- TIC2	EA2	R GE	RXN_ LVL	MAX_ LIVE_ GRPS	SAM_ LVL	SAM_ ROE2	REC	BIG_ CROW2
	Sig. (2-tailed)	.236	.539	.121	.804			000	000.	720.	000.			000.	000.	000.
	z	89	89	89	89	89	89	89	89	89	89	89	89	38	89	51
SAM_ LVL	Pearson Correlation	(a)	.(a)	.(a)	.(a)	.(a)	.(a)	.(a)	.(a)	.(a)	.(a)	.(a)	.(a)	.(a)	.(a)	.(a)
	Sig. (2-tailed)															
	Z	89	89	89	89	89	89	89	89	89	89	89	89	38	89	51
SAM_ ROE2	SAM_ Pearson ROE2 Correlation	140	.130	240	900.	.(a)	.(a)	.725	.651		.884	.946	.(a)	-	1.000	1.000
	Sig. (2-tailed)	.401	.436	.147	.970			000.	000.	.005	000.	000			000.	000
	z	38	38	38	38	38	38	38	38	38	38	38	38	38	38	37
REC	Pearson Correlation	081	.104	139	037	.(a)	.(a)	.656	.489	.361	.642	.596	.(a)	1.000	-	1.000
	Sig. (2-tailed)	.514	.397	.260	.767			000.	000.	.002	000.	000		000		000
	z	89	89	89	89	89	89	89	89	89	89	89	89	38	89	51
BIG_ CROW2	Pearson Correlation	165	.145	186	071	.(a)	.(a)	.719	.674	.379	.739	.726	.(a)	1.000	1.000	-
	Sig. (2-tailed)	.248	.312	.190	.619			000	000	900.	000	000.		000	000.	
	Z	51	51	51	51	51	51	51	51	51	51	51	51	37	51	51
**	** Correlation is signif	(polict 6) lovel 10 0 odt to taccit	4 10 0 00	4-0) love	\bolic											

^{**} Correlation is significant at the 0.01 level (2-tailed).

* Correlation is significant at the 0.05 level (2-tailed).
a Cannot be computed because at least one of the variables is constant.

Appendix B

Regression Analysis

B1. MiG-23/29 Short Air-to-Air Missile Regression Lines

Author's original work using SPSS 12.0.1

Variables Entered/Removed (b)

Model	Variables Entered	Variables Removed	Method
1	LOG_F15_FLOWN_RATIO(a)		Enter

a All requested variables entered.

b Dependent Variable: F15_ING_ATT

Model Summary

Model	R	R Square		Std. Error of the Estimate
1	.366(a)	.134	.129	.1338707

a Predictors: (Constant), LOG_F15_FLOWN_RATIO

ANOVA (b)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.467	1	.467	26.078	.000(a)
	Residual	3.029	169	.018		
	Total	3.496	170			

a Predictors: (Constant), LOG_F15_FLOWN_RATIO

b Dependent Variable: F15_ING_ATT

Coefficients (a)

		Unstand	lardized	Standardized						Colline	arity
Model		Coeffi	cients	Coefficients	t	Sig.	Co	rrelation	ıs	Statis	tics
		В	Std.	Beta			Zero-	Partial	Part	Toler-	VIF
		В	Error	Deta			order	Failiai	ган	ance	VII
1	(Constant)	.123	.011		11.599	.000					
	LOG_F15_ FLOWN_ RATIO	137	.027	366	-5.107	.000	366	366	366	1.000	1.000

a Dependent Variable: F15_ING_ATT

Collinearity Diagnostics (a)

Model	Dimension	Eigen value	Condition Index	Variance	e Proportions
				(Constant)	LOG_F15_ FLOWN_RATIO
1	1	1.260	1.000	.37	.37
	2	.740	1.304	.63	.63

a Dependent Variable: F15_ING_ATT

Regression MiG Short

Variables Entered/Removed (b)

Model	Variables Entered	Variables Removed	Method
1	LOG_F15_FLOWN_RATIO(a)		Enter

a All requested variables entered. b Dependent Variable: RED_ING_ATT

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.386(a)	.149	.144	.2038830

a Predictors: (Constant), LOG_F15_FLOWN_RATIO

ANOVA (b)

Ī	Model		Sum of Squares	df	Mean Square	F	Sig.
Ī	1	Regression	1.231	1	1.231	29.618	.000(a)
		Residual	7.025	169	.042		
I		Total	8.256	170			

a Predictors: (Constant), LOG_F15_FLOWN_RATIO

b Dependent Variable: RED_ING_ATT

APPENDIX B

Coefficients (a)

Mod	del		dardized icients	Standardized Coefficients	Т	Sig.	Correlations		Collinearity Statistics		
		В	Std. Error	Beta			Zero- order	Partial	Part	Toler- ance	VIF
1	(Constar	t) .708	.016		43.829	.000					
	LOG_F1 FLOWN RATIC	.222	.041	.386	5.442	.000	.386	.386	.386	1.000	1.000

a Dependent Variable: RED_ING_ATT

Collinearity Diagnostics (a)

Model	Dimension	Eigenvalue	Condition Index	Variance Proportions	
				(Constant)	LOG_F15_ FLOWN_RATIO
1	1	1.260	1.000	.37	.37
	2	.740	1.304	.63	.63

a Dependent Variable: RED_ING_ATT

B2. SU-27 Long Air-to-Air Missile Regression Lines

Author's original work using SPSS 12.0.1

Descriptive Statistics

	Mean	Std. Deviation	N
F15_ING_ATT	.183603	.1804347	68
LOG_F15_FLOWN_RATIO	.128302	.3356707	68

Correlations

		F15_ING_ATT	LOG_F15_ FLOWN_RATIO
Pearson Correlation	F15_ING_ATT	1.000	223
	LOG_F15_FLOWN_RATIO	223	1.000
Sig. (1-tailed)	F15_ING_ATT		.034
	LOG_F15_FLOWN_RATIO	.034	
N	F15_ING_ATT	68	68
	LOG_F15_FLOWN_RATIO	68	68

Variables Entered/Removed (b)

Model	Variables Entered	Variables Removed	Method
1	LOG_F15_FLOWN_RATIO(a)		Enter

a All requested variables entered. b Dependent Variable: F15_ING_ATT

Model Summary (b)

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Change Statistics				
					R Square Change	F Change	df1	df2	Sig. F Change
1	.223(a)	.050	.035	.1772188	.050	3.454	1	66	.068

a Predictors: (Constant), LOG_F15_FLOWN_RATIO b Dependent Variable: F15_ING_ATT

ANOVA (b)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.108	1	.108	3.454	.068(a)
	Residual	2.073	66	.031		
	Total	2.181	67			

a Predictors: (Constant), LOG_F15_FLOWN_RATIO

b Dependent Variable: F15_ING_ATT

Coefficients (a)

Model			lardized cients	Standardized Coefficients	Т	Sig.	Confi	5% dence al for B	Correlations		Collin Stati	earity stics	
		В	Std. Error	Beta			Lower Bound	Upper Bound	Zero- order	Partial	Part	Toler- ance	VIF
1	(Constant) LOG_F15_ FLOWN_ RATIO	.199 120	.023	223	8.640 -1.858	.000	.153	.245	223	223	223	1.000	1.000

a Dependent Variable: F15_ING_ATT

Collinearity Diagnostics (a)

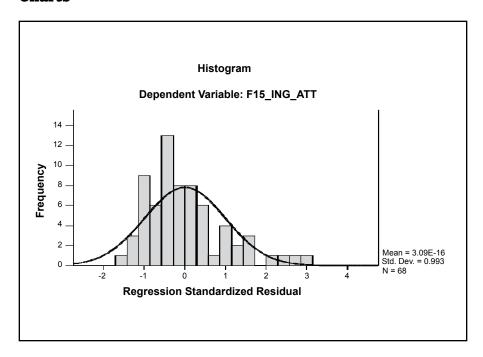
Model	Dimension	Eigenvalue	Condition Index	Variance Proportions	
				(Constant)	LOG_F15_ FLOWN_RATIO
1	1	1.359	1.000	.32	.32
	2	.641	1.457	.68	.68

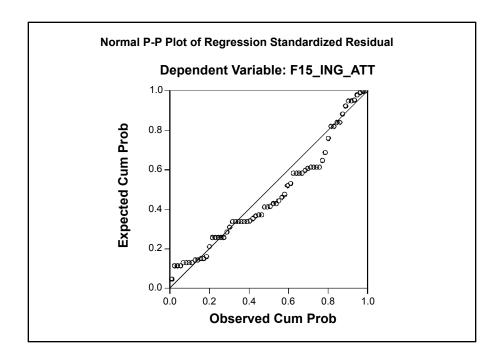
a Dependent Variable: F15_ING_ATT

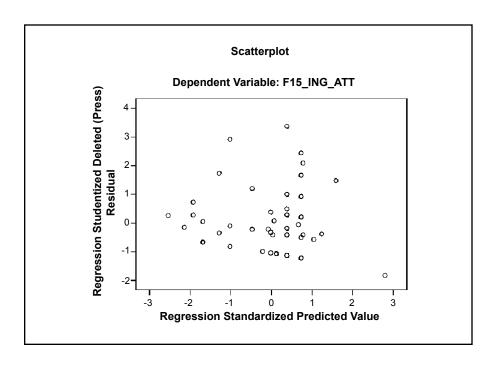
Casewise Diagnostics (a, b)

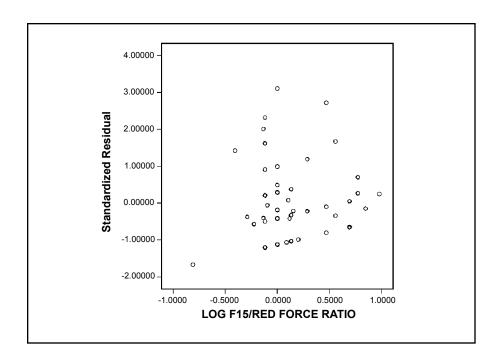
Case Number	Std. Residual	F15_ING_ATT
210	3.109	.750

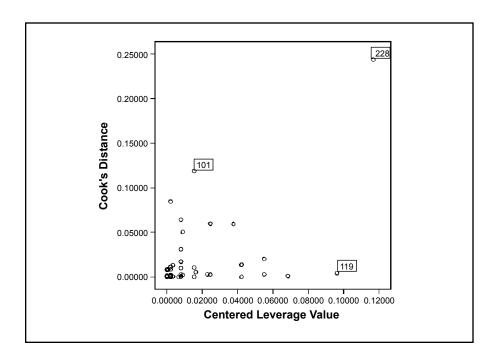
a Dependent Variable: F15_ING_ATT


b When values are missing, the substituted mean has been used in the statistical computation.


Residuals Statistics (a)


	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	.081413	.296186	.183603	.0402359	68
Std. Predicted Value	-2.540	2.798	.000	1.000	68
Standard Error of Predicted Value	.021	.064	.029	.009	68
Adjusted Predicted Value	.075972	.341055	.183988	.0422238	68
Residual	2961861	.5510176	.0000000	.1758913	68
Std. Residual	-1.671	3.109	.000	.993	68
Stud. Residual	-1.793	3.136	001	1.008	68
Deleted Residual	3410555	.5604822	0003847	.1813765	68
Stud. Deleted Residual	-1.825	3.373	.008	1.033	68
Mahal. Distance	.000	7.829	.985	1.532	68
Cook's Distance	.000	.244	.016	.035	68
Centered Leverage Value	.000	.117	.015	.023	68


a Dependent Variable: F15_ING_ATT


Charts

Regression

Notes

Descriptive Statistics

	Mean	Std. Deviation	N
RED_ING_ATT	.736658	.2199147	68
LOG_F15_FLOWN_RATIO	.128302	.3356707	68

Correlations

		RED_ING_ATT	LOG_F15_ FLOWN_RATIO
Pearson Correlation	RED_ING_ATT	1.000	.316
	LOG_F15_FLOWN_RATIO	.316	1.000
Sig. (1-tailed)	RED_ING_ATT		.004
	LOG_F15_FLOWN_RATIO	.004	
N	RED_ING_ATT	68	68
	LOG_F15_FLOWN_RATIO	68	68

Variables Entered/Removed (b)

Model	Variables Entered	Variables Removed	Method
1	LOG_F15_FLOWN_RATIO(a)		Enter

a All requested variables entered. b Dependent Variable: RED_ING_ATT

Model Summary (b)

Model	R	R Square	Adjusted R Square		Change Statistics				
					R Square Change	F Change	df1	df2	Sig. F Change
1	.316(a)	.100	.086	.2102374	.100	7.310	1	66	.009

a Predictors: (Constant), LOG_F15_FLOWN_RATIO b Dependent Variable: RED_ING_ATT

ANOVA (b)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.323	1	.323	7.310	.009(a)
	Residual	2.917	66	.044		
	Total	3.240	67			

a Predictors: (Constant), LOG_F15_FLOWN_RATIO b Dependent Variable: RED_ING_ATT

Coefficients (a)

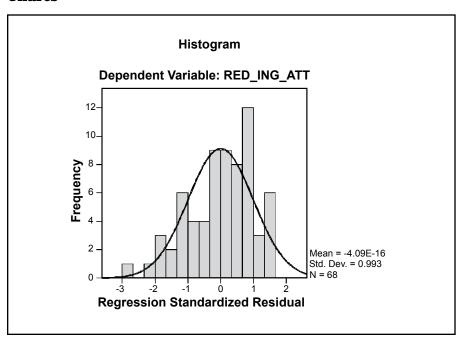
Model			lardized cients	Standardized Coefficients	t	Sig.	Confidence Correlations		Correlations			earity stics	
		В	Std. Error	Beta			Lower Bound	Upper Bound	Zero- order	Partial	Part	Toler- ance	VIF
1	(Constant) LOG_F15_ FLOWN_ RATIO	.710 .207	.027	.316	25.993 2.704	.000	.656	.765	.316	.316	.316	1.000	1.000

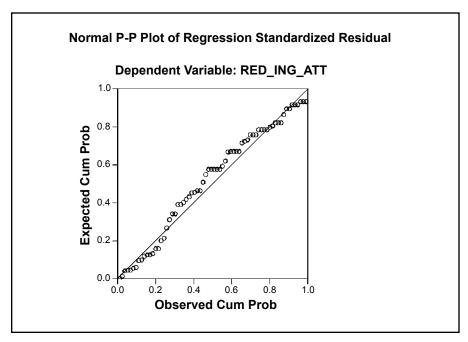
a Dependent Variable: RED_ING_ATT

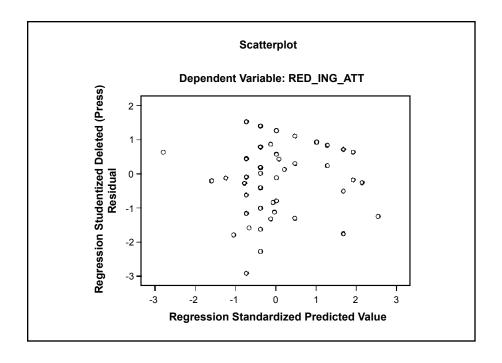
APPENDIX B

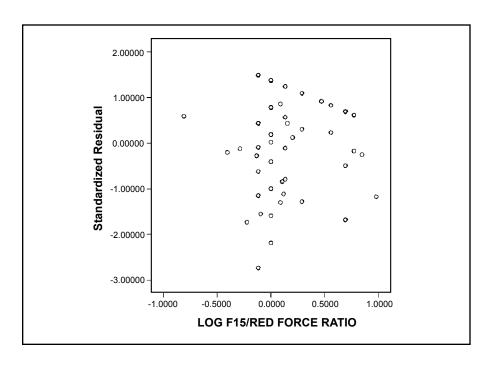
Collinearity Diagnostics (a)

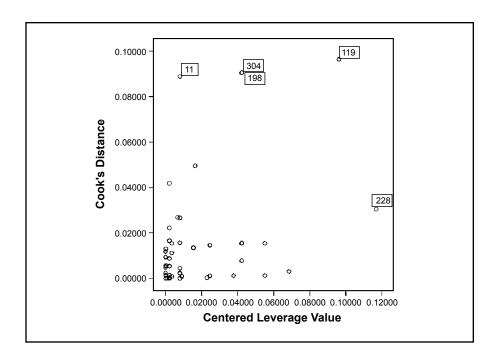
Model	Dimension	Eigen value	Condition Index	Variance F	Proportions
				(Constant)	LOG_F15_ FLOWN_RATIO
1	1	1.359	1.000	.32	.32
	2	.641	1.457	.68	.68


a Dependent Variable: RED_ING_ATT


Residuals Statistics (a)


	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	.542350	.913029	.736658	.0694435	68
Std. Predicted Value	-2.798	2.540	.000	1.000	68
Standard Error of Predicted Value	.025	.076	.034	.011	68
Adjusted Predicted Value	.523517	.943783	.736960	.0715145	68
Residual	5746369	.3142520	.0000000	.2086626	68
Std. Residual	-2.733	1.495	.000	.993	68
Stud. Residual	-2.765	1.512	001	1.007	68
Deleted Residual	5880008	.3215603	0003016	.2146556	68
Stud. Deleted Residual	-2.918	1.527	005	1.020	68
Mahal. Distance	.000	7.829	.985	1.532	68
Cook's Distance	.000	.096	.014	.022	68
Centered Leverage Value	.000	.117	.015	.023	68


a Dependent Variable: RED_ING_ATT


Charts

Long SU-27 Regression Analysis w/o Mission #228 Warnings

For models with dependent variable F15_ING_ATT, the following variables are constants or have missing correlations: SAM_LVL. They will be deleted from the analysis.

Descriptive Statistics

	Mean	Std. Deviation	N
F15_ING_ATT	.186343	.1803651	67
LOG_F15_FLOWN_RATIO	.142321	.3175161	67
LIGHT	1.30	.461	67
TACTIC2	3.37	.599	67
EA2	3.19	.680	67
REGEN2	2.94	.239	67
RXN_LVL	2.36	.595	67
MAX_LIVE_GRPS	3.42	.497	67
SAM_LVL	2.00	.000	67
SAM_ROE2	3.62	.363	67
REC	2.67	.473	67
BIG_CROW2	3.62	.422	67

Correlations

		F15_ ING_ ATT	LOG_ F15_ FLOWN_ RATIO	LIGHT	TAC- TIC2	EA2	RE GE N2	RXN_ LVL	MAX_ LIVE_ GRPS	SAM_ LVL	SAM_ ROE2	REC	BIG_ CROW2
Pearson Correla- tion	F15_ ING_ATT	1.000	286	023	.115	.006	.042	.097	.095		.114	.116	.136
	LOG_ F15_ FLOWN_ RATIO	286	1.000	.283	104	.089	.208	004	104		069	055	120
	LIGHT	023	.283	1.000	190	139	.164	.101	.042		.015	030	053
	TACTIC2	.115	104	190	1.000	.825	.158	.554	.588		.448	.653	.649
	EA2	.006	.089	139	.825	1.000	.072	.500	.564		.348	.484	.557
	REGEN2	.042	.208	.164	.158	.072	1.000	.579	.214		.435	.360	.373
	RXN_LVL	.097	004	.101	.554	.500	.579	1.000	.920		.758	.639	.676
	MAX_ LIVE_ GRPS	.095	104	.042	.588	.564	.214	.920	1.000	·	.699	.592	.631
	SAM_LVL									1.000			
	SAM_ ROE2	.114	069	.015	.448	.348	.435	.758	.699		1.000	.767	.821
	REC	.116	055	030	.653	.484	.360	.639	.592		.767	1.000	.893
	BIG_ CROW2	.136	120	053	.649	.557	.373	.676	.631	•	.821	.893	1.000
Sig. (1-tailed)	F15_ ING_ATT		.010	.425	.177	.481	.367	.219	.222	.000	.179	.174	.137
	LOG_ F15_ FLOWN_ RATIO	.010		.010	.200	.237	.046	.488	.200	.000	.289	.329	.167
	LIGHT	.425	.010		.062	.130	.092	.207	.367	.000	.453	.405	.335
	TACTIC2	.177	.200	.062		.000	.101	.000	.000	.000	.000	.000	.000
	EA2	.481	.237	.130	.000		.280	.000	.000	.000	.002	.000	.000
	REGEN2	.367	.046	.092	.101	.280		.000	.041	.000	.000	.001	.001
	RXN_LVL	.219	.488	.207	.000	.000	.000		.000	.000	.000	.000	.000
	MAX_ LIVE_ GRPS	.222	.200	.367	.000	.000	.041	.000	•	.000	.000	.000	.000
	SAM_LVL	.000	.000	.000	.000	.000	.000	.000	.000		.000	.000	.000
	SAM_ ROE2	.179	.289	.453	.000	.002	.000	.000	.000	.000		.000	.000

APPENDIX B

Correlations (continued)

		F15_ ING_ ATT	LOG_ F15_ FLOWN_ RATIO	LIGHT	TAC- TIC2	EA2	RE GE N2	RXN_ LVL	MAX_ LIVE_ GRPS	SAM_ LVL	SAM_ ROE2	REC	BIG_ CROW2
	REC	.174	.329	.405	.000	.000	.001	.000	.000	.000	.000		.000
	BIG_ CROW2	.137	.167	.335	.000	.000	.001	.000	.000	.000	.000	.000	·
N	F15_ ING_ATT	67	67	67	67	67	67	67	67	67	67	67	67
	LOG_ F15_ FLOWN_ RATIO	67	67	67	67	67	67	67	67	67	67	67	67
	LIGHT	67	67	67	67	67	67	67	67	67	67	67	67
	TACTIC2	67	67	67	67	67	67	67	67	67	67	67	67
	EA2	67	67	67	67	67	67	67	67	67	67	67	67
	REGEN2	67	67	67	67	67	67	67	67	67	67	67	67
	RXN_LVL	67	67	67	67	67	67	67	67	67	67	67	67
	MAX_ LIVE_ GRPS	67	67	67	67	67	67	67	67	67	67	67	67
	SAM_LVL	67	67	67	67	67	67	67	67	67	67	67	67
	SAM_ ROE2	67	67	67	67	67	67	67	67	67	67	67	67
	REC	67	67	67	67	67	67	67	67	67	67	67	67
	BIG_ CROW2	67	67	67	67	67	67	67	67	67	67	67	67

Variables Entered/Removed (a)

Model	Variables Entered	Variables Removed	Method
1	LOG_F15_ FLOWN_RATIO		Forward (Criterion: Probability-of-F-to-enter <= .050)

a Dependent Variable: F15_ING_ATT

Model Summary (b)

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Change Statistics				
					R Square Change	F Change	df1	df2	Sig. F Change
1	.286(a)	.082	.068	.1741711	.082	5.778	1	65	.019

a Predictors: (Constant), LOG_F15_FLOWN_RATIO b Dependent Variable: F15_ING_ATT

ANOVA (b)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.175	1	.175	5.778	.019(a)
	Residual	1.972	65	.030		
	Total	2.147	66			

a Predictors: (Constant), LOG_F15_FLOWN_RATIO b Dependent Variable: F15_ING_ATT

Coefficients (a)

Model		Unstand Coeffi	lardized cients	Standardized Coefficients	t	Sig.	Confi	5% dence al for B	Correlations		Collin Stati	earity stics	
		В	Std. Error	Beta			Lower Bound	Upper Bound	Zero- order	Partial	Part	Toler- ance	VIF
1	(Constant)	.209	.023		8.971	.000	.163	.256					
	LOG_ F15_ FLOWN_ RATIO	162	.068	286	-2.404	.019	297	027	286	286	286	1.000	1.000

a Dependent Variable: F15_ING_ATT

Excluded Variables (b)

Model		Beta In	Т	Sig.	Partial Correlation	Collinearity Statistics		
						Tolerance	VIF	Minimum Tolerance
1	LIGHT	.062(a)	.501	.618	.062	.920	1.087	.920
	TACTIC2	.086(a)	.720	.474	.090	.989	1.011	.989
	EA2	.032(a)	.263	.793	.033	.992	1.008	.992
	REGEN2	.106(a)	.874	.385	.109	.957	1.045	.957
	RXN_LVL	.095(a)	.801	.426	.100	1.000	1.000	1.000
	MAX_LIVE_GRPS	.066(a)	.551	.584	.069	.989	1.011	.989
	SAM_ROE2	.095(a)	.792	.431	.099	.995	1.005	.995
	REC	.101(a)	.846	.401	.105	.997	1.003	.997
	BIG_CROW2	.103(a)	.858	.394	.107	.986	1.015	.986

a Predictors in the Model: (Constant), LOG_F15_FLOWN_RATIO

Collinearity Diagnostics (a)

	Model	Dimension	Eigen value	Condition Index	Variance Proportions	
					(Constant)	LOG_F15_ FLOWN_RATIO
I	1	1	1.412	1.000	.29	.29
l		2	.588	1.549	.71	.71

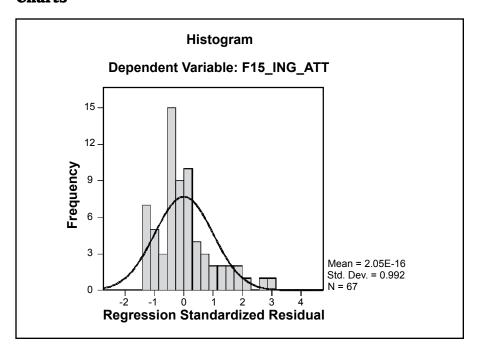
a Dependent Variable: F15_ING_ATT

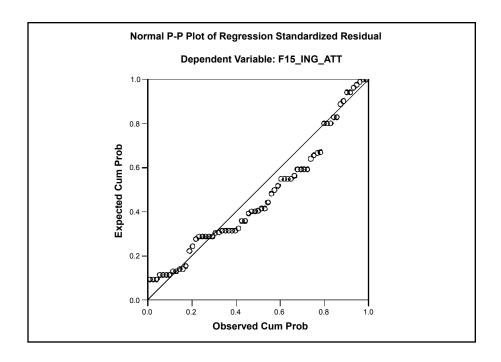
Casewise Diagnostics (a, b)

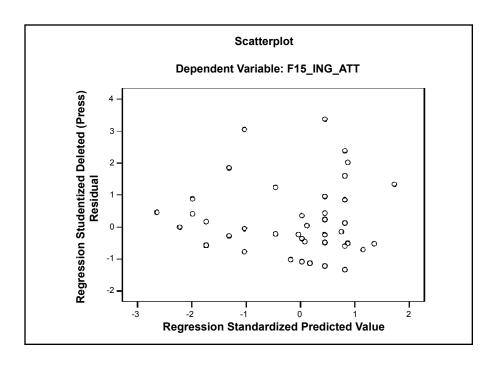
Case Number	Std. Residual	F15_ING_ATT		
210	3.104	.750		

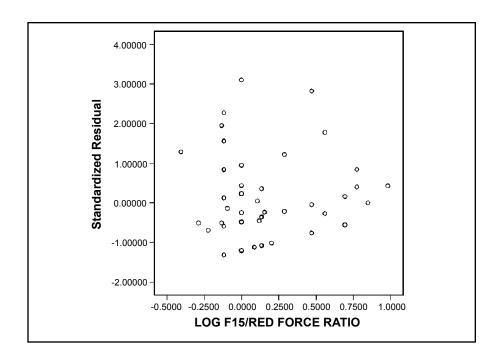
a Dependent Variable: F15_ING_ATT

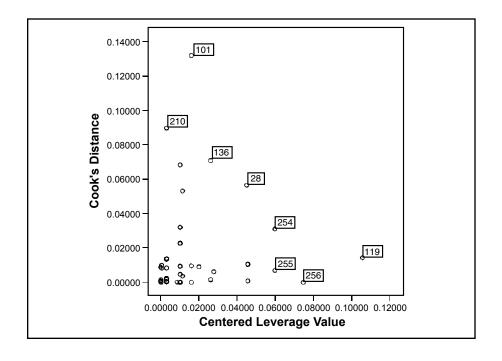
b Dependent Variable: F15_ING_ATT


b When values are missing, the substituted mean has been used in the statistical computation.


Residuals Statistics (a)


	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	.050254	.275249	.186343	.0515327	67
Std. Predicted Value	-2.641	1.725	.000	1.000	67
Standard Error of Predicted Value	.021	.060	.029	.009	67
Adjusted Predicted Value	.040004	.260897	.185932	.0519537	67
Residual	2285581	.5405580	.0000000	.1728466	67
Std. Residual	-1.312	3.104	.000	.992	67
Stud. Residual	-1.329	3.132	.001	1.006	67
Deleted Residual	2344409	.5504493	.0004114	.1775729	67
Stud. Deleted Residual	-1.337	3.373	.010	1.032	67
Mahal. Distance	.001	6.974	.985	1.376	67
Cook's Distance	.000	.132	.014	.023	67
Centered Leverage Value	.000	.106	.015	.021	67


a Dependent Variable: F15_ING_ATT


Charts

Regression

Warnings

For models with dependent variable RED_ING_ATT, the following variables are constants or have missing correlations: SAM_LVL. They will be deleted from the analysis.

Descriptive Statistics

	Mean	Std. Deviation	N
RED_ING_ATT	.737703	.2214044	67
LOG_F15_FLOWN_RATIO	.142321	.3175161	67
LIGHT	1.30	.461	67
TACTIC2	3.37	.599	67
EA2	3.19	.680	67
REGEN2	2.94	.239	67
RXN_LVL	2.36	.595	67
MAX_LIVE_GRPS	3.42	.497	67
SAM_LVL	2.00	.000	67
SAM_ROE2	3.62	.363	67
REC	2.67	.473	67
BIG_CROW2	3.62	.422	67

Correlations

		RED_ ING_ ATT	LOG_ F15_ FLOWN_ RATIO	LIGHT	TAC- TIC2	EA2	RE GE N2	RXN_ LVL	MAX_ LIVE_ GRPS	SAM_ LVL	SAM_ ROE2	REC	BIG_ CROW2
Pearson Correla- tion	RED_ ING_ATT	1.000	.322	005	.116	.295	110	199	186		179	136	153
	LOG_ F15_ FLOWN_ RATIO	.322	1.000	.283	104	.089	.208	004	104		069	055	120
	LIGHT	005	.283	1.000	190	139	.164	.101	.042		.015	030	053
	TACTIC2	.116	104	190	1.000	.825	.158	.554	.588		.448	.653	.649
	EA2	.295	.089	139	.825	1.000	.072	.500	.564		.348	.484	.557
	REGEN2	110	.208	.164	.158	.072	1.000	.579	.214		.435	.360	.373
	RXN_LVL	199	004	.101	.554	.500	.579	1.000	.920		.758	.639	.676
	MAX_ LIVE_ GRPS	186	104	.042	.588	.564	.214	.920	1.000		.699	.592	.631
	SAM_ LVL	-		-		•	•		-	1.000		•	
	SAM_ ROE2	179	069	.015	.448	.348	.435	.758	.699	-	1.000	.767	.821
	REC	136	055	030	.653	.484	.360	.639	.592		.767	1.000	.893
	BIG_ CROW2	153	120	053	.649	.557	.373	.676	.631		.821	.893	1.000
Sig. (1-tailed)	RED_ ING_ATT		.004	.485	.175	.008	.189	.053	.066	.000	.074	.137	.108
	LOG_ F15_ FLOWN_ RATIO	.004		.010	.200	.237	.046	.488	.200	.000	.289	.329	.167
	LIGHT	.485	.010		.062	.130	.092	.207	.367	.000	.453	.405	.335
	TACTIC2	.175	.200	.062		.000	.101	.000	.000	.000	.000	.000	.000
	EA2	.008	.237	.130	.000		.280	.000	.000	.000	.002	.000	.000
	REGEN2	.189	.046	.092	.101	.280		.000	.041	.000	.000	.001	.001
	RXN_LVL	.053	.488	.207	.000	.000	.000		.000	.000	.000	.000	.000
	MAX_ LIVE_ GRPS	.066	.200	.367	.000	.000	.041	.000		.000	.000	.000	.000
	SAM_ LVL	.000	.000	.000	.000	.000	.000	.000	.000	•	.000	.000	.000
	SAM_ ROE2	.074	.289	.453	.000	.002	.000	.000	.000	.000		.000	.000

Correlations (continued)

		RED_ ING_ ATT	LOG_ F15_ FLOWN_ RATIO	LIGHT	TAC- TIC2	EA2	RE GE N2	RXN_ LVL	MAX_ LIVE_ GRPS	SAM_ LVL	SAM_ ROE2	REC	BIG_ CROW2
	REC	.137	.329	.405	.000	.000	.001	.000	.000	.000	.000		.000
	BIG_ CROW2	.108	.167	.335	.000	.000	.001	.000	.000	.000	.000	.000	
N	RED_ ING_ATT	67	67	67	67	67	67	67	67	67	67	67	67
	LOG_ F15_ FLOWN_ RATIO	67	67	67	67	67	67	67	67	67	67	67	67
	LIGHT	67	67	67	67	67	67	67	67	67	67	67	67
	TACTIC2	67	67	67	67	67	67	67	67	67	67	67	67
	EA2	67	67	67	67	67	67	67	67	67	67	67	67
	REGEN2	67	67	67	67	67	67	67	67	67	67	67	67
	RXN_LVL	67	67	67	67	67	67	67	67	67	67	67	67
	MAX_ LIVE_ GRPS	67	67	67	67	67	67	67	67	67	67	67	67
	SAM_ LVL	67	67	67	67	67	67	67	67	67	67	67	67
	SAM_ ROE2	67	67	67	67	67	67	67	67	67	67	67	67
	REC	67	67	67	67	67	67	67	67	67	67	67	67
	BIG_ CROW2	67	67	67	67	67	67	67	67	67	67	67	67

Variables Entered/Removed (a)

Model	Variables Entered	Variables Removed	Method
1	LOG_F15_ FLOWN_RATIO		Forward (Criterion: Probability-of-F-to-enter <= .050)
2	EA2		Forward (Criterion: Probability-of-F-to-enter <= .050)
3	RXN_LVL		Forward (Criterion: Probability-of-F-to-enter <= .050)

a Dependent Variable: RED_ING_ATT

Model Summary (d)

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Change Statistics				
					R Square Change	F Change	df1	df2	Sig. F Change
1	.322(a)	.104	.090	.2112013	.104	7.531	1	65	.008
2	.419(b)	.175	.149	.2041876	.071	5.542	1	64	.022
3	.568(c)	.323	.291	.1864914	.148	13.722	1	63	.000

a Predictors: (Constant), LOG_F15_FLOWN_RATIO

ANOVA (d)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.336	1	.336	7.531	.008(a)
	Residual	2.899	65	.045		
	Total	3.235	66			
2	Regression	.567	2	.283	6.800	.002(b)
	Residual	2.668	64	.042		
	Total	3.235	66			
3	Regression	1.044	3	.348	10.008	.000(c)
	Residual	2.191	63	.035		
	Total	3.235	66			

b Predictors: (Constant), LOG_F15_FLOWN_RATIO, EA2

c Predictors: (Constant), LOG_F15_FLOWN_RATIO, EA2, RXN_LVL

d Dependent Variable: RED_ING_ATT

a Predictors: (Constant), LOG_F15_FLOWN_RATIO b Predictors: (Constant), LOG_F15_FLOWN_RATIO, EA2 c Predictors: (Constant), LOG_F15_FLOWN_RATIO, EA2, RXN_LVL

d Dependent Variable: RED_ING_ATT

APPENDIX B

Coefficients (a)

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig. Sig. Confidence Interval for B		dence	Correlations			Collinearity Statistics	
		В	Std. Error	Beta			Lower Bound	Upper Bound	Zero- order	Partial	Part	Toler- ance	VIF
1	(Constant)	.706	.028		24.927	.000	.649	.762					
	LOG_F15_ FLOWN_ RATIO	.225	.082	.322	2.744	.008	.061	.388	.322	.322	.322	1.000	1.000
2	(Constant)	.429	.121		3.552	.001	.188	.670					
	LOG_F15_ FLOWN_ RATIO	.208	.079	.298	2.618	.011	.049	.367	.322	.311	.297	.992	1.008
	EA2	.087	.037	.268	2.354	.022	.013	.162	.295	.282	.267	.992	1.008
3	(Constant)	.588	.118		4.966	.000	.351	.824					
	LOG_F15_ FLOWN_ RATIO	.193	.073	.277	2.655	.010	.048	.338	.322	.317	.275	.989	1.011
	EA2	.160	.039	.492	4.089	.000	.082	.239	.295	.458	.424	.742	1.347
	RXN_LVL	165	.045	444	-3.704	.000	254	076	199	423	384	.748	1.337

a Dependent Variable: RED_ING_ATT

Excluded Variables (d)

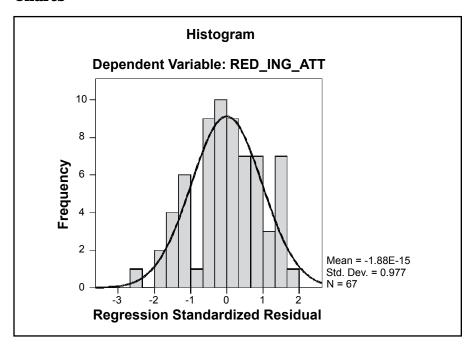
Model		Beta In	t	Sig.	Partial Correlation	Colli	nearity Stati	stics
						Tolerance	VIF	Minimum Tolerance
1	LIGHT	104(a)	850	.398	106	.920	1.087	.920
	TACTIC2	.151(a)	1.289	.202	.159	.989	1.011	.989
	EA2	.268(a)	2.354	.022	.282	.992	1.008	.992
	REGEN2	185(a)	-1.555	.125	191	.957	1.045	.957
	RXN_LVL	198(a)	-1.711	.092	209	1.000	1.000	1.000
	MAX_LIVE_GRPS	154(a)	-1.313	.194	162	.989	1.011	.989
	SAM_ROE2	157(a)	-1.344	.184	166	.995	1.005	.995
	REC	118(a)	-1.007	.318	125	.997	1.003	.997
	BIG_CROW2	116(a)	981	.330	122	.986	1.015	.986
2	LIGHT	058(b)	480	.633	060	.892	1.120	.892
	TACTIC2	257(b)	-1.219	.227	152	.288	3.471	.288
	REGEN2	200(b)	-1.752	.085	216	.954	1.048	.951
	RXN_LVL	444(b)	-3.704	.000	423	.748	1.337	.742
	MAX_LIVE_GRPS	465(b)	-3.628	.001	416	.658	1.520	.658
	SAM_ROE2	290(b)	-2.472	.016	297	.868	1.151	.866
	REC	330(b)	-2.640	.010	316	.756	1.322	.752
	BIG_CROW2	404(b)	-3.077	.003	362	.660	1.514	.660
3	LIGHT	.036(c)	.317	.752	.040	.847	1.181	.691
	TACTIC2	055(c)	273	.786	035	.264	3.784	.264
	REGEN2	.099(c)	.706	.483	.089	.546	1.833	.428
	MAX_LIVE_GRPS	207(c)	706	.483	089	.126	7.943	.126
	SAM_ROE2	.013(c)	.078	.938	.010	.421	2.375	.363
	REC	136(c)	975	.333	123	.550	1.817	.544
	BIG_CROW2	205(c)	-1.349	.182	169	.458	2.183	.458

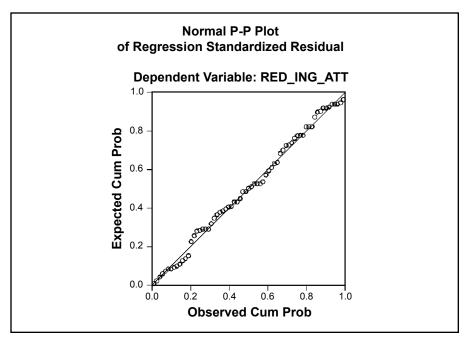
a Predictors in the Model: (Constant), LOG_F15_FLOWN_RATIO b Predictors in the Model: (Constant), LOG_F15_FLOWN_RATIO, EA2 c Predictors in the Model: (Constant), LOG_F15_FLOWN_RATIO, EA2, RXN_LVL d Dependent Variable: RED_ING_ATT

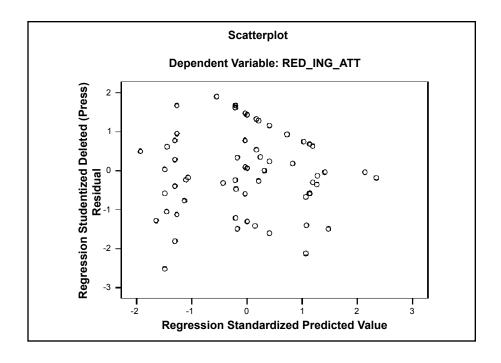
APPENDIX B

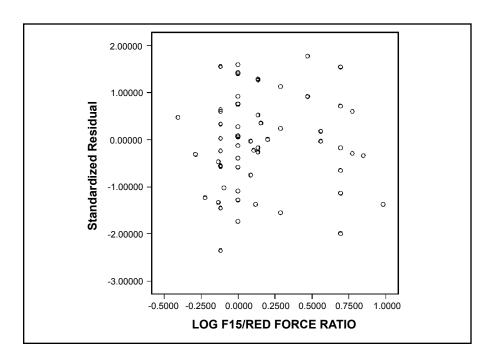
Collinearity Diagnostics (a)

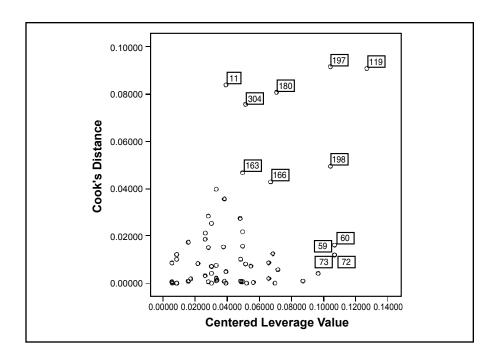
Model	Dimension	Eigen value	Condition Index	Variance Proportions					
				(Constant)	LOG_F15_ FLOWN_RATIO	EA2	RXN_LVL		
1	1	1.412	1.000	.29	.29				
	2	.588	1.549	.71	.71				
2	1	2.254	1.000	.01	.07	.01			
	2	.725	1.764	.01	.93	.01			
	3	.022	10.230	.99	.00	.99			
3	1	3.180	1.000	.00	.02	.00	.00		
	2	.769	2.033	.00	.97	.00	.00		
	3	.031	10.210	.42	.01	.04	.89		
	4	.021	12.349	.58	.00	.95	.10		


a Dependent Variable: RED_ING_ATT


Residuals Statistics (a)


	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	.494902	1.032380	.737703	.1257844	67
Std. Predicted Value	-1.930	2.343	.000	1.000	67
Standard Error of Predicted Value	.027	.070	.044	.011	67
Adjusted Predicted Value	.486527	1.036057	.738585	.1280233	67
Residual	4393155	.3313461	.0000000	.1822037	67
Std. Residual	-2.356	1.777	.000	.977	67
Stud. Residual	-2.422	1.858	002	1.008	67
Deleted Residual	4644304	.3623375	0008825	.1940250	67
Stud. Deleted Residual	-2.523	1.896	004	1.020	67
Mahal. Distance	.363	8.380	2.955	1.981	67
Cook's Distance	.000	.092	.016	.023	67
Centered Leverage Value	.006	.127	.045	.030	67


a Dependent Variable: RED_ING_ATT


Charts

Bibliography

- Air Force Doctrine Document (AFDD) 1. Air Force Basic Doctrine, 17 November 2003.
- AFDD 2.0. Operations and Organization, 03 April 2007.
- AFDD 2-1.1. Counterair Operations, 26 April 2002.
- Army Field Manual (FM) 3-0. Operations, June 2001.
- Army FM 6-0. Command and Control of Army Forces, August 2003.
- Arnold, Lt Col Henry H. (USAF). "Our Air Force after One Year at War." *Air Force* (January 1943).
- Art, Robert J. "The Four Functions of Force." In *International Politics: Enduring Concepts and Contemporary Issues*, edited by Robert J. Art and Robert Jervis, 153–65. NY: Addison-Wesley, 2003.
- Baldwin, David A. *Economic Statecraft*. Princeton, NJ: Princeton University Press, 1985.
- Ball, Robert E. *The Fundamentals of Aircraft Combat Survivability Analysis and Design*. 2d ed. AIAA Education Series. Reston, VA: American Institute of Aeronautics and Astronautics, 2003.
- Biddle, Stephen D. "The European Conventional Balance: A Reinterpretation of the Debate." *Survival* 30, no. 2 (March/April 1988).
- Briefing. 98th Range Wing. Subject: Nevada Test & Training Range (NTTR). https://www.mil.nellis.af.mil/units/range/(accessed 2008).
- Byman, Daniel, and Matthew C. Waxman. *The Dynamics of Coercion: American Foreign Policy and the Limits of Military Might.* Rand Studies in Policy Analysis. Cambridge: Cambridge University Press, 2002.
- Clausewitz, Carl von. *On War*. Edited and translated by Michael Howard and Peter Paret. Princeton, NJ: Princeton University Press, 1976.
- "The Defeat of the German Air Force." US Strategic Bombing Survey-Military Analysis Division, 137.306, IRIS No. 00113307, in USAF Collection, Air Force Historical Research Agency (AFHRA).
- "Desert Shield Tactical Air Force Combat Losses, Damage, and Munitions Consumption." Office of the Secretary of De-

- fense Program Analysis Division, CHSH 40–2, IRIS No. 0870161, in USAF Collection, AFHRA.
- Dupuy, Trevor Nevitt. *Numbers, Predictions, and War: Using History to Evaluate Combat Factors and Predict the Outcome of Battles.* 1979. Rev. ed. Fairfax, VA: Hero Books, 1985.
- Epstein, Joshua M. *The Calculus of Conventional War: Dynamic Analysis without Lanchester Theory*. Washington, DC: Brookings Institution, 1985.
- Freedman, Lawrence. *Deterrence*. Cambridge, UK; Malden, MA: Polity Press, 2004.
- Fuller, J. F. C. *The Foundations of the Science of War.* London: Hutchinson & Co., 1926.
- Grabmann, Walter. "USAF Historical Studies: No. 164 German Air Force Air Defense Operations 1933–1945, vol. 1." Edited by USAF Historical Division Research Studies Institute: Air University, Maxwell Air Force Base (AFB), AL, 1956.
- Gray, Colin S. *Modern Strategy*. Oxford; New York: Oxford University Press, 1999.
- Hone, Thomas C. "Korea." In *Case Studies in the Achievement of Air Superiority*, edited by Benjamin Franklin Cooling, xvii, 678. Washington, DC: Office of Air Force History, 1994.
- Jacobs, W. A. "Operation Overlord." In *Case Studies in the Achievement of Air Superiority*, edited by Benjamin Franklin Cooling, xvii, 678. Washington, DC: Office of Air Force History, 1994.
- Jervis, Robert. System Effects: Complexity in Political and Social Life. Princeton, NJ: Princeton University Press, 1997.
- Kagan, Frederick W. Finding the Target: The Transformation of American Military Policy. 1st ed. New York, NY: Encounter Books, 2006.
- Keaney, Thomas A., and Eliot A. Cohen. *Gulf War Air Power Survey*. 5 vols. Washington, DC: Department of the Air Force, 1993.
- Keppel, Geoffrey, and Sheldon Zedeck. Data Analysis for Research Designs: Analysis-of-Variance and Multiple Regression/Correlation Approaches. NY: W.H. Freeman, 1989.
- Kutner, Michael H., Chris Nachtsheim, and John Neter. *Applied Linear Regression Models*. 4th ed. Boston; New York: McGraw-Hill/Irwin, 2004.

- Lambeth, Benjamin S. *NATO's Air War for Kosovo: A Strategic and Operational Assessment*. Santa Monica, CA: Project Air Force RAND, 2001.
- Lanchester, Frederick William. *Aircraft in Warfare: The Dawn of the Fourth Arm*, 1916. Reprint, Sunnyvale, CA: Lanchester Press, Inc., 1995.
- Lilley, Tom, et al. *Problems of Accelerating Aircraft Production during World War II*. Boston: Harvard University Graduate School of Business Administration, Division of Research, 1946.
- Lloyd, Richmond M., and Naval War College (US). Force Planning Faculty. *Fundamentals of Force Planning*. 2 vols. Newport, RI: Naval War College Press, 1990.
- Lloyd, Richmond M., and Timothy N. Castle. *Strategy and Force Planning*. 4th ed. Newport, RI: Naval War College Press, 2004.
- Luttwak, Edward. *Strategy: The Logic of War and Peace*. Rev. and enl. ed. Cambridge, MA: Belknap Press of Harvard University Press, 2001.
- Maintenance Metrics US Air Force. Maxwell AFB-Gunter Annex, AL: Air Force Logistics Management Agency, 2001.
- Murray, Williamson. Strategy for Defeat: The Luftwaffe, 1933–1945, 1983. Reprint. Maxwell AFB, AL: Air University Press, 2007.
- Perla, Peter P. *The Art of Wargaming: A Guide for Professionals and Hobbyists*. Annapolis, MD: Naval Institute Press, 1990.
- "Predicted Attrition for Instant Thunder Air Campaign." HQ USAF-XOXWD, CHSH 40–2, IRIS No. 0870161, in USAF Collection, AFHRA.
- Reinburg, Joseph H. *Air-to-Air Combat in World War II: A Quantitative History*. Research Paper P-345. Arlington, VA: Institute for Defense Analyses: Economic and Political Studies Division, 1966.
- Schelling, Thomas C. *Arms and Influence*. New Haven, CT: Yale University Press, 1966.
- Schmitt, John. "Systemic Operational Design." Unpublished Paper, http://www.mcwl.usmc.mil/concepts/home.cfm.
- Sherman, William Carrington, and Wray R. Johnson. *Air War-fare*. 1926. Reprint. Maxwell AFB, AL: Air University Press, 2002.

- Sherry, Michael S. *The Rise of American Air Power: The Creation of Armageddon*. New Haven: Yale University Press, 1987.
- Sun Tzi. *The Art of War.* Edited and translated by Samuel B. Griffith. NY: Oxford University Press, 1963.
- Taylor, James G., and Beny Neta. "Explicit Analytical Expression for a Lanchester Attrition-Rate Coefficient for Bonder and Farrell's M-Period Target-Engagement Policy." In *Working Paper* #5, DTRA Project: Naval Postgraduate School, Monterey, CA, 2001.
- "Tenets of Red Flag." Headquarters Air Combat Command (ACC/A3J). https://a3.acc.af.mil/a3j/flags/tenets%20of %20rf.doc.
- Thierauf, Robert J., and Robert C. Klekamp. *Decision Making through Operations Research*. 2d ed. New York: Wiley, 1975.
- United States General Accounting Office. *Operation Desert Storm: Evaluation of the Air Campaign*. Washington, DC: Government Accounting Office, June 1997.
- Warden, John A. *The Air Campaign: Planning for Combat*, Future Warfare Series. Washington, DC: Pergamon-Brassey's, 1989.
- Watman, Kenneth. "War Gaming and Its Role in Examining the Future." *Brown Journal of World Affairs* 10, no. 1 (2003): 57.
- Werrell, Kenneth P. "Across the Yalu: Rules of Engagement and the Communist Air Sanctuary during the Korean War." *Journal of Military History* 72, no. 2 (April 2008): 451–75.

After you have read this research report, please give us your frank opinion on the contents. All comments—large or small, complimentary or caustic—will be gratefully appreciated. Mail them to the director, AFRI, 155 N. Twining St., Maxwell AFB, AL 36112-6026.

Air Superiority at Red Flag: Mass, Technology, and Winning the Next War

Locke

Thank you for your assistance.

Air Superiority at Red Flag Mass, Technology, and Winning the Next War

Air University Press Team

Chief Editor Richard Bailey, PhD

Copy Editor Carolyn J. Burns

Cover Art, Book Design, and Illustrations Daniel Armstrong

Composition and Prepress Production Ann Bailey

*Quality Review*Bessie E. Varner

Print Preparation and Distribution
Diane Clark