FILE TITLE: MSgt Ralph Bottriell,
- First Military Free-Fall Parachutist
- Developer of the 1st D-Ring parachute

Reviewed by:

AFEHRI Representative: [Signature] date 13 Dec 97

EPC Representative: [Signature] date 18 Dec 97

Scanner Operator: [Signature] date 13 Dec 97

APPROVED BY: [Signature]

GARY R. AKIN, CMSgt, USAF
Director
Air Force Enlisted Heritage Research Institute
MSgt Ralph Bottriell: Father of the first free-fall back-type parachute.

Master Sergeant Bottriell is undoubtedly the "dean" of all parachute jumpers. He made most of his leaps at a time when flying itself was considered extremely hazardous but parachute jumping downright dangerous. On entering the service, Sergeant Bottriell undertook the daring mission of establishing in parachutes and of providing to the world, especially aviators, that parachutes could be relied upon. He repeatedly jeopardized his life to this end.

Sergeant Bottriell made his first jump from a hot-air balloon when only 16 years of age, on the Fourth of July, 1902, before a carnival in Nashville, Michigan. This was when the Wright Brothers' airplane was still only a dream. Then only a boy, he ascended by balloon with his chute. When he had gained the desired altitude he cut himself loose. Thus when he joined the service some seven years later, he was already a famous parachute jumper, having more than two hundred leaps to his credit.

His most outstanding jump was on May 19, 1919, at McCook Field, Ohio, when he was the first man to jump with the manually operated free-type parachute which he himself developed. This was the first chute that could be opened after the jumper had cleared the plane, and was the direct forerunner of the modern parachute used in the Air Corps and the Air Force today.
THIS ARMY PARACHUTE IS 28 FEET IN DIAMETER, WITH A 36-INCH SHOCK-ABSORBING VENT AND A BACK TYPE OF PACK STRAPPED TO THE BACK. DEVELOPED BY THE ENGINEERING DIVISION, McCOOK FIELD, DAYTON, OHIO

DIRECTIONS FOR THE OPERATION OF THE ADOPTED TYPE OF PARACHUTES AND COMMENTS THEREON

BY MAJOR E. L. HOFFMAN, J. M. A., AIR SERVICE
Chief, Equipment Section, McCook Field

The type of parachutes adopted by the Army Air Service is designed to be strong enough to carry a man weighing 180 lbs. travelling at 240 mph. The experimental chutes have been tested with 400 lbs. at 150 mph, which gives this result. Specifications prescribed that each chute shall be actually tested by dropping with a 300 lb. weight at 150 mph, so as not to strain the chute near its limit.

This chute described in this article is thought to be the best on the market today, either foreign or domestic.

When the accompanying photographs were made at McCook Field five drops with live weights had been accomplished with the United States Army airplane chute. Three of the tests were by men who had previously made drops—veterans in fact—but two were made by men who had never dropped before, and had little time in the air. All of the drops were made by stepping off the steps of a DH-9 machine after the engine had been throttled. Each of the droppers delayed pulling the ripcord until well clear of the airplane.

In four cases the chute opened fully before descending 100 feet. In the fifth case the shroud lines became twisted once. The action was similar to that which would be obtained had the parachute opened normally and the parachutist purposely made one revolution, which would wind the entire assembly of shroud lines. The man dropped 200 feet before he accomplished the feat of untwisting himself. During this time the chute was partially open and, had it continued to the ground, it is believed that at least no more serious injury than a broken leg would have resulted. This was due, probably, to the manner in which this parachutist tumbled and twisted when he dropped.

It is known that the chute would have automatically untwisted itself very soon without any aid. This has been noted several times with dummy drops.

The first live drop was made by Mr. L. J. Irving, who is a veteran dropper. He jumped first, using both hands to do so. While falling he coolly searched for the pull ripcord.
Chutes should be stored in a dry place and those that have become wet should be dried without delay. In packing, care must be taken to see:

1. The shroud lines are not tangled.
2. Pieces of newspaper are placed between each roll of shroud lines.
3. Bottom of chute is down (when open).

Chutes should be stored in a dry place and those that have become wet should be dried without delay. In packing, care must be taken to see:

1. The shroud lines are not tangled.
2. Pieces of newspaper are placed between each roll of shroud lines.
3. Bottom of chute is down (when open).

U.S. AIR SERVICE

and finding it under his arm, jerked it. The second drop was made by Mr. Floyd Smith, veteran aviator, who had previously made several drops. The next two drops were made by Mr. James Russell and Mr. James Higgins, respectively, neither of whom had ever dropped before nor been much in the air. They are employed as parachute mechanics. The fifth was made by Sergeant W. R. Bottrell.

All jumpers used the same chute, which is 28 feet in diameter, with a 32-inch, patent, shock absorbing vent, supported by 30 shroud lines of 80 pounds breaking strength.

In all live drops the engine was throttled, and it is believed that the emergency is remote when it will not be possible to close the throttle or cut the switch before jumping. In case the engine is idling, the problem of getting away is not difficult in normal, or nearly normal, flight, nor is it believed that the matter of speed itself will be bothersome within reasonable limits. There will be ample time to get out of the machine under any circumstances (provided it is far enough above the ground), before a speed is reached which would cause the chute to fail. It will, of course, be necessary to clear all parts of the machine.

The type we are now considering is known as a flat chute, 28 feet in diameter, with a 45-inch flexible vent. It has 40 shroud lines, each of which has a breaking strength of 250 pounds. These are arranged in four groups of 10 each, tied to a D ring, which in turn is sewn into the harness webbing. The strength of the cords attached to any D ring is 2500 pounds; the D ring has a strength of 5000 pounds, while the webbing, as arranged, breaks at 3400. The breast and leg straps are strong and out of all proportion. In the cords themselves, which are the weakest part, there is a factor of safety of at least 3 under the most extreme of the conditions named above, as a chute has already successfully passed this test with shroud lines attached to each D ring of only 720 pounds.

IMMEDIATELY AFTER JAMES RUSSELL JUMPED BY PARACHUTE AT M COOK FIELD, FROM A DR-4, AT 1,500 FEET AND SPEED OF 90 MILES AN HOUR TO TEST LATEST DEVELOPMENT OF THIS DEVICE

4. Mouth of pilot chute is down.
5. Bottom of pilot chute is at least 2000 feet above bottom of the pack as possible.
6. Bottom is meant the end nearest the ground when pack is worn.
7. Main chute is not packed on top of pilot chute nor so that any of its folds can obstruct its action.
8. Ends of pilot chute are carefully folded back upon itself.

This chute is steerable. By pulling down on one or on of the four webs, it can be caused to travel sidewise somewhat. When nearing the ground, the leg straps should be unsnapped, and immediately upon touching the ground the breast strap. It may be well in some cases to even unsnap the breast strap a short distance from the ground, holding both ends with the hands close to the body. The knees must be flexed upon striking the ground to ease the shock. At times chutes strike harder than at other times, due to down trends of air, and vice versa. Even if the rubbers in the flexible vent should break the rate of descent will not be dangerously increased. The flexible vent arrangement is primarily for the purpose of insuring better opening. No knots should be placed in shroud lines between vent and D rings as the lines will be weakened at the knot. If any lines break they should be replaced with an entire new line.

It is believed that the best methods of leaving the airplane will be as follows (in case of fire, wing collapse, serious plane failures, inoperative controls, some collisions, and so on):

1. In level flight, or 60 degrees above or below level flight, and at 500 feet or more, close throttle or cut switch; put hand in pull ring and jump or dive over side; pull rip cord as soon as leaving plane, but not before; or climb back to empenage or out on one wing far enough to clear horizontal stabilizer—usually about the first strut; pull rip cord, and the chute should pull the aviator off with a loss of altitude less than 50 feet. With small airplanes it is believed that it will be impracticable to climb out on a wing, as that wing would instantly fall; but with larger planes this maneuver may be practicable if performed quickly.

2. When at altitude less than 500 feet and more than 100 feet, get in one of positions outlined above, out on wing or on empenage, and pull rip-cord.

3. From nose dive, if possible to be in position at more than 100 feet altitude, out on one wing or on empenage, as before stated.

4. From spinning nose dive, from rear cockpit on inside of spin.

5. In any case, if near the ground, back on empenage.

The above five paragraphs are conjectures, but they are submitted for what they may be worth.
Parachute—A Friend in Need

Erwin H. Nichols
Master Sergeant, Quantico Field, Hanford, Ill.

There are three types of parachutes: Attached, Soaring and Free. Parachutes are called "Attached" when the container, or pack carrier, is fastened to the fuselage of an airplane, basket of a balloon or car of an airship. Any life line leads from the harness of the jumper to the shock lines of the chute; the mouth of the container is closed with string, strong enough to hold the chute in place but breaking with the weight of the jumper as he drops away, allowing the chute to run freely into the air.

The Soaring Type: With the theory in mind that the jumper must surely be blown into the tail of a fast moving plane, several designers worked on a plan to throw him above and over the tail planes. Actual jumping has exploded this theory, and development of this type has been discontinued.

The Free Type: In the free type the entire harness and pack is on the jumper, and the rip cord is manually operated. During the last year of the war, the necessity of using parachutes to escape from damaged airplanes became generally conceded. The Technical Division at McCook Field, to whom belongs the credit for the present pack used by the U.S. Army Air Service, began extensive experiments with American, as well as Allied and German parachutes.

It soon became evident that the attached type for airplanes was not satisfactory, for the following reasons: It requires special provision in the airplane for carrying the chute. The life line can come to the aviator's harness on one side of the plane only, and it is considered practically impossible to get out of a ship on the outside of a spin. In case of a vertical move with the wings gone, it is possible for the fuselage to attain greater speed than would a man, making it impossible for him to break the chute free from its container. There is also the chance of the long life line fouling on some part of the plane.

This fact was well brought out in a demonstration of "Guardian Angel," designed by the E. C. Caldwell Company, England, at McCook Field, during the fall of 1919. Lieutenant R. A. Caldwell, R.F.C., was killed because of the failure of his life line, which caught on the rocker arm of the elevator control cables of a D.H. airplane, causing a free drop of several hundred feet.

With the pack on his person, the aviator may jump from either side, or in any manner he may choose, and as the other objections, mentioned above, are overcome by the free type, it was adopted for airplane use by the U.S. Army Air Service.

Many objections had to be overcome, however, and it has taken more than four years, since successful jumps were made with the free type chute, to get the aviators of the Army Air Service to sit on them. And even then will pass before all these men become thoroughly confident in them and acquainted with their possibilities.

Some of the early objections were, that a falling man had no control of mind or muscle and would be unable to pull the manually operated rip cord. It is told of Rodney Law, who made a jump at Kelly Field, in 1917, from the wing of a Jenny, using an old balloon chute merely rolled up and carried under his arm, that he complained of falling so fast that air friction burned his face before his chute opened. We have all heard it said of a workman, falling from a high scaffold, that "He was dead before he hit the ground!"

These theories have been exploded. It has been demonstrated that a man can fall at great speed, with full control of his faculties, and if there is any difficulty in breathing, none of the jumpers has said anything about it. One man delayed pulling his rip cord for six seconds, just to put and give a thrill. He gave it!

More than objections had to be overcome; structural weaknesses had to be discovered and eliminated. Almost none of the parachutes then available were strong enough to withstand the shock of opening at high speeds. This was especially true of the attached types, which had primarily been designed for balloon jumping. They were, and are, for the most part, built of cotton fabric with shock lines made from clothes line. The balloonist jumps from a standing start, while at a speed of 150 miles an hour the airplane jumper has an initial momentum of 220 feet a second.

It has been soon recognized that provision must be made to take care of the shock of opening at high speed, and a type of chute designed for the purpose.

The first parachute law, passed in 1920, had a 15-inch vent. This vent took the form of a chimney, the top of which was
in a parachute with shock-absorber rubbers after the parachute was opened. It passed through a heavy wind, however, and it was not until five jumps were made that the man could get the hang of it.

And more time brought confidence. As the falling man would drop, it was told to him that he should look at a Jenny, old balloon chutes, and carry the parachute in mind, that he could make it fall over a few times, use the chute and come down, that he could then jump again in a few days after.

But the theories have been worked out enough so that he can launch himself in the air and land on his feet.

And so it has come to pass that a man can jump from an airplane and land on his feet. The exact procedure in a parachute, and its effect on the pilot, is now a matter of record.

The chute is made of silk, and the rubber rubbers are used to absorb the shock. The rubber rubbers are made of a special material that is very elastic and can absorb the shock of the fall. It has been found that the rubber rubbers are much more effective than the old balloon chutes.

The parachute is opened by a release mechanism that is actuated by a release device. The release device is actuated by the release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.

The release device is actuated by a release mechanism that is actuated by a release device. The release device is actuated by a release mechanism when the parachute is opened.
FOR training jumps, two chutes are attached to the harness in such manner that one is on the jumper's back and the other in reserve on his chest. But in all the jumps made at this station, there has never been a failure of the first chute to function. The second chute is frequently released for the purpose of relieving the jumper of its weight in landing, the sky diver who has a main chute, descent is slow, and lacking a rush of air the reserve may not open. More frequently it does, and in this case the chutes are crowded apart by the spill from the base of the skirts, to an angle of about 15 degrees. Due to this spill, the rate of descent is not greatly lessened.

When jumping was first started at this school, it was feared that in some cases faint or momentary lapse of consciousness might prevent the jumper from pulling his rip cord. With this idea in mind, a scheme was devised to pull him off a platform attached to the upper wings of a D. H. Gainning the proper altitude, the pilot signals to pull the rip cord and kicks the tail over with the rudder, so the way may be clear in the rear. The chute is partially open before the jumper leaves the wing. After making a "pull off," the student is allowed to step off the side of the fuselage.

More than 360 jumps have proved that there is little cause to worry over inability to pull the rip cord. It seems natural for a falling man to grab and hang on to the first thing available, and the rip cord is handily placed.

After making several jumps and gaining confidence, it is found that the student had rather leave in a headlong dive from the cockpit. This method of getting away from the ship seems to be a good one, for it can be quickly accomplished. Except the rip cord be pulled before actually leaving the ship, there is not the slightest chance of being blown into the tail planes, for the jumper has all the forward speed of the ship, and though descent starts immediately, the sensation is that of going ahead, rather than that of falling. The rip cord may be pulled instantly after the jump is made.

In many jumps at this station, the chute has been fully open and supporting the jumper within 15 feet below the plane. The latest type chutes, freshly packed, will open in three-fifths of a second, at speeds approximating 100 miles an hour. And because of the speed the chute frequently opens parallel to the line of flight of the ship, but of course under it.

Once in the air and sitting pretty, the first thing to do is look down and see what you are over. By pulling down on the chord lines on one side, air is spilled from the skirt on the other; the chute will slip to the side on which the lines are being pulled. Thus it is possible to miss obstacles on the ground. It is estimated the chute may be side slipped 20 feet in a hundred feet descent. Side slipping has the descent and should be considered when close to the ground.

It is safest to land with the wind on the back—most sprained ankles are caused by landing side-ways—and the chute can be turned around by grasping the harness rings in each hand, throwing the loops to one side, as if one were in a swing. When there is little wind, an easy landing can be made by pulling down on the rings at the moment of landing. The legs must be kept close together, and jump; no effort being made to stand it up quickly. Should the wind be blowing in excess of 20 miles an hour, it may be advisable to extend the feet straight ahead and slide in on a wing.

In an ordinary wind, a drag on the ground may be prevented by catching one chord line and pulling in on it until the chute is spilled. However, if the wind is strong, it may be advisable to unstrap the chest and leg straps before reaching the ground. Once on the ground it is easy to get out of the harness with these snaps released.

The question arises as to what altitude the novice might jump with the reasonable assurance that the chute would open in time to save life, it being understood, of course, that no one would care to jump at low altitude, except in case of emergency.

Speed of the ship and rapidity in pulling the rip cord are the big factors. Confidence, which only comes with knowledge of the chute and jumping experience, are considered essential for saving of life, at altitudes below 100 feet. Successful tests have been made with weights, at high speed, at 50 feet.

While not advising the pulling of the rip cord while standing in the cockpit, it has been done in two cases, and both men are living to tell about it.

In attempting an altitude record jump at McCook Field, North Carolina, a radio man in the ship's cord was accidentally pulled while climbing out of the cockpit. He was pulled through the tail, taking him with the rudder, the balanced nose of which caught in his harness. His left arm was injured but he made a safe, though uncanny, landing. His arm got well.

Sergeant William Clarey, standing in the step on the side of the fuselage, pulled his rip cord before actually jumping. In opening, the skirt bellowed in between the brace and the stabilizer, catching on outer keys and ripping two panels wide open. A perfectly safe descent was made in the damaged chute.

It is not claimed the parachute is a cure for all the ills of the airplane, but many of those killed in airplane accidents could have been saved by giving the chute a chance.
fied the requirements for an aviator's certificate. When that fact was reported to Washington, Lt. Lahm received a reprimand that matter-of-factly stated, "It is not the policy of the War Department to train enlisted men in flying... very few... are qualified to observe military operations or render accurate and intelligent reports of what they see..."

Vernon Burge was the first of more than 3,000 young enlisted airmen to earn their pilot's wings in the three decades that followed. And, in order to deal with the dilemma, the War Department wrote and rewrote the policies in an attempt to define who was eligible for flight training, the criteria for aviation pilots, and what kind of aircraft or cargo they could and could not transport.

On the more personal level, these young aviators directed the energies of engines lashed to fabric-covered spruce struts held together by bailing wire and piloted by guts. Getting up was one thing, the time aloft was the treat, but they frequently wondered if the damn thing would hold together when they landed.

Then, in the years between the world wars, a diversity of problems arose. Economic times were tough. It was a period of national uncertainty, and military programs came under severe scrutiny from an anxious Congress. The uniformed services were cut, airplanes were simply not available, spare parts inventories were not maintained, fuel was hard to come by, and aviation slots were reserved for the commissioned officers.

Despite the difficulties of the "roaring '20s" and the depression of the 1930s, aircraft were modified and used as ambulances and rescue vehicles. In response to the Air Mail contractors strike, the United States Army Air Corps' enlisted pilots flew the missions and delivered the mail. When the Alaskan-Canadian territory and the Great Smoky Mountains National Park were photographed and mapped, enlisted pilots were in command of some of the aircraft.

These young men were bound by one single purpose—they wanted to fly. Willingly, they performed the host of mundane garrison duties as they anxiously awaited their turn in the cockpit.

The stories, their exploits and their accomplishments are legion. These young pilots were—in the modern venacular, free spirits—with ice water in their veins and a devil-may-care attitude. Yet, their abilities as pilots were unmistakable. They were good. Damn good.

Within the ranks, they were heroes. They composed the few who wore the wings of an Army Aviator. And, if I had to pick a favorite personality in enlisted aviation, it would almost certainly have to be Sergeant Raymond "Uncle Chew" Stockwell. He was a huge walrus of a man with a neatly trimmed beard, a booming voice and piercing blue eyes. He was an aerial photographer and one of the most skilled pilots to ever operate on the Alaskan frontier. His work as pilot and photographer graced the pages of National Geographic Magazine and enabled the mapping of the Alaskan-Canadian Highway.

He was a man who definitely took some getting used to. His physical presence was intimidating and his appearance often did not fit the military "mold." Stockwell took particular pride in his mustache and beard, which he frequently described as "viking hair"—it had never known a razor. While serving on the Alaskan frontier, he once encountered an astounded commander from the spit-and-polish stateside Army. The impecably uniformed officer pointed to the NCO's beard and asked, "What's THAT?" Uncle Chew responded rather factually: "It's hair, sir. It grows there!"

Chew was also a gifted instructor pilot who maintained a possessive approach to his planes and his pupils. But, then, it took a dedicated sort of student to fly second seat in an open cockpit biplane with Uncle Chew—given the multitude of brown streaks of tobacco juice that adorned the fuse-lage from cockpit to vertical stabilizer!

Master Sergeant Ralph Bottrell possessed a different sort of commitment. He was one of the Army's pio-

---

Private Vernon L. Burge, at the time, and six other recruits, volunteered for "balloon duty" with the newly created Signal Corps Aeronautical Division in August 1907. (Photo courtesy of Marjorie Burge Waters).
neers in parachute jumping. At age 24, Bottrell had some 700 to 800 jumps to his credit either from balloons — he started at age 16 — or aeroplanes. Then in 1919, he jumped successfully from an aircraft in flight, employing a parachute with a D Ring and a ripcord device for the first time. The D Ring and the ripcord were his inventions and enabled endangered aviators the ability to exit an aircraft with some added measure of safety. His exploits and his near brushes with death caused many an anxious moment and earned him a Distinguished Flying Cross in 1933.

Then in 1941, Congress halfheartedly funded Public Law 99, which provided some conditional training possibilities and gave "...enlisted flying students the title of Aviation Students." Graduates of the program "...were awarded the rating of pilot and warranted as a staff sergeant."

By that time, too, much of Europe was teetering on the brink of, or immersed in, World War II. American public opinion was divided on the subject of whether or not to be aggressively involved in those hostilities. Within the uniformed ranks of the Army Air Corps, many enlisted men sought the coveted slots for flight school. Some prospective aviators were impatient and doubted if they would ever receive one of the coveted aviation appointments in the Army Air Corps. Rather than wait, they crossed the border and joined the Canadian Royal Air Forces. There, the candidates "enjoyed" the rigors of the Canadian flight training program, and the graduates earned the coveted chevrons of our ally. Many of those who earned the Canadian wings were then transferred to England and a number fought to repulse the German Luftwaffe in the Battle of Britain. While some did not survive, many others ultimately transferred back to the United States Army Air Corps following the Japanese attack on Pearl Harbor. In fact, there were at least 145 staff sergeant pilots who transferred back to American service. They had the unique distinction of wearing the pilot's wings of two nations.

In the earliest months of World War II, sergeant pilots did all that they were supposed to do and more. They provided a core of experience that could — and did — serve as a foundation to build the Army Air Forces. They were proven pilots of experience and longevity. They had indeed been around. Those pilots with chevrons winged their way to the various forays around the world in command of fighter aircraft, transports and bombers. They served with bravery, honor and distinction. Yet, official Washington still did not know how to cope with the concept that enlisted men could actually be trusted with aircraft. To put an end to the dilemma once and for all, they called for new legislation.

In late 1942, Congress enacted the Flight Officer Act — Public Law 650. As a result, "...those sergeant pilots produced by the Staff Sergeant Pilot Program were promoted to flight of..."
Master Sergeant Ralph W. Bottrill, world famous Air Corps parachute pioneer, retired from duty at Kelly Field, Texas, pursuant to orders from The Adjutant General. The veteran parachute expert and daredevil jumper termed his 30 years of service with the Air Corps, during which he had more than 500 parachute jumps.

Sergeant Bottrill is undoubtedly the 'Dean of All Parachute Jumpers,' because he has the leading parachute technician in the Air Corps. He made most of his 12 parachute jumps at a time when flying itself was highly hazardous, but parachute jumping downright dangerous. On entering the service, Sergeant Bottrill undertook the daring mission of developing a means of parachute jumping or 'flying' to the world, especially to America, that parachutes could be relied upon to save lives.

Sergeant Bottrill made his first jump from a hot-air balloon when only 16 years old, on the fourth of July, 1919, before a carnival in Nashville, Tenn. This was when the Wright brothers' plane was still only a dream. The Sergeant, then only a boy, ascended with his parachute below his balloon. Once in the air, he had no other means to return safely to terra firma except to cut himself loose when he had gained the desired altitude. Thus, when he joined the Service some seven years later, he was already a famous parachute jumper, having more than 500 slated to his credit.

His first outstanding jump was on May 13, 1919, at Kelly Field, Dallas, Texas, when he was the first Army man to use a manually operated free-type parachute which he himself developed. This was the first type that a man could jump after the jumper had cleared the plane, and was the direct forerunner of the parachute used in the Air Corps today.

Sgt. Bottrill realized the hazards of the old attached-type parachute, which was fastened to the plane and opened when the jumper left the ship. It was quite possible for the shrouds to become entangled in the tail section of the ship. He later, after years of work on a free-type parachute, was combined and was ready for the big test. For this jump and the many others which he had participated in, he was awarded the Distinguished Flying Cross in July, 1933, with the following citation:

For heroism while participating in aerial flights. On May 19, 1919, at

Cook Field, Dayton, Ohio, Sgt. Bottrill made the first jump ever formed by Army personnel which was manually operated, free-type parachute. While parachute jumping of any kind was extremely hazardous, Bottrill showed the Army that a properly trained parachutist was not only possible but practical for exploring the sky at various altitudes to perfect his parachute. By his untiring effort, perseverance, and disregard of personal danger, Sergeant Bottrill did materially in proving the free-type parachute to not only possible but practical for flight experiments.

In recommending Master Sergeant Bottrill for the award of the Distinguished Flying Cross, Brigadier General John Pope, Chief of the Air Corps Material Division, says:

For the valuable scientific data which this noncommissioned officer aided in securing for the Air Corps, for his bravery, skill and splendid work as a parachute test pilot, I am of the highest praise. The success of the Army parachute and the number of lives it has saved is the most potent proof of the value of his work. Further, "Sergeant Bottrill's service... is of the highest praise and he has over through his efforts, bravery, skill and manly conduct been a credit to the Air Corps of the Army. Such work as his has raised the standard of work and morale throughout the army and is comparable to the finest acts of bravery during time of war."

Sergeant Bottrill's most spectacular jump was in 1920, when he was attempting to establish a record for a high-altitude descent. After climbing to 10,000 feet, which was the maximum ceiling of his plane, he was starting to jump when his 'chute opened prematurely and dragged him through the tail section into space. He was rendered unconscious by the blow and his left arm was nearly torn off. A pencil in his parachute was badly torn, but the parachute passed him safely enough so that luckily he retained consciousness in ample time to open his second safety 'chute. The total descent required 92 minutes, during which time he very nearly died of death from his wounds. With the elevators, rudder, vertical and horizontal stabilizers of his plane practically demolished, and with no parachute, since Sergeant Bottrill was wearing the only two 'chutes available at that time, the

V-435, A.C.
The pilot of the damaged plane was in almost a moribund condition when the Sergeant got up to the cockpit. Fortunately, the pilot managed to hold his plane safely and was unharmed.

This nearly fatal accident did not prevent Sergeant Bottrell from flying in the least, as was expected. As soon as he was able, he made a long journey throughout the United States, demonstrating, by actual jumps, the new parachute of the service. Thus, in 1930, Sergeant Bottrell made his first jump at Brooks Field, San Antonio, Texas, having qualified for his parachute certificate. He had developed an impregnable faith and complete disregard for individual safety. No complete confidence throughout the world in the life-saving silk. Without this confidence, the parachute would be useless, for no pilot would dare to rely on it.

Sergeant Bottrell joined the Army in the 72d Field Artillery. In 1930, he joined the Air Service at Kelly Field, Texas. He has served at Brooks Field, Lockport Field, Ohio; and in the 57th Field Artillery. He is now in charge of the parachute division of the 49th Field Artillery in the 49th Field Artillery. He has personally instructed thousands of men, graduates of the Air Corps Field Artillery School in the use of the parachute. Three-quarters of the 572nd Air Corps' service has been in San Antonio. There is a town in Texas that has the privilege of Kelly Field's parachute and built up a fine in the middle of the love songs.

Sergeant Bottrell's contribution to the advancement of flying is a most outstanding one. Aviation owes this brave and fearless noncommissioned officer a debt of gratitude, the measure of which is illimitable.

Sergeant Bottrell's home is in Grand Rapids, Mich. He will make his future residence in Los Angeles, Calif., where his parents now reside.

The 7th Reconnaissance Squadron, France Field, was well represented on the first day of the meet, according to reports elsewhere in this issue. The squadrons furnished 3 times the 12-plane formation, and officers of the squadron visited them, making the trip twice. The 1st Lt. Henry K. Brown, Capt. W. B. Welitz, 2 and 1st Lt. W. E. Boyd (Air Res.). The 12th Flying Field reported a very busy and most delightful time as guests of the Federal Government.

The graduation of the Class 40-A from Austin's Flying School.

Supplementing the information given in the previous issue of the Air Corps News Letter regarding Class 40-A, the following can be expected: The Kelly Field Correspondent, commenting on the inability of Major General Henry H. Arnold, Chief of the Air Corps, to attend the graduation exercises as he had originally planned, stated that the entire flying school regretted exceedingly his absence, since all personnel had keenly anticipated his visit.

The graduation went off exactly as scheduled. Major General Robert J. Reeves, 8th Corps Area Commander, and Brigadier General Barton K. Yount, Assistant to the Chief of the Air Corps, were especially pleased with the aerial review, which was the largest at any Kelly Field graduation exercises. The review itself was outstanding in that the 120 B-23-1s and the 36 B-16s cleared Kelly Field in exactly 3 minutes, passing in review after a 20-minute flight within three seconds of each other. The spacings and intervals before the reviewing stand were far better than would normally be accepted at a graduating class. As the tail of the reviewing column cleared the reviewing stand, the leading elements were over the ranger line coming in for a landing. As a finale, the entire 133 planes landed within 3 minutes. This in itself displayed perfect air discipline and training.

General Reeves and General Yount, as well as the other officers in the reviewing stand, considered the entire review an achievement of which Kelly Field may be justly proud. Especially considering that the entire group was mass formation, and that nearly 60% of the men flying the ships have been graduated at Kelly.

Ex McCook Flyer Given Award for Chute Tests

Master Sgt. Ralph W. Bottrell, formerly of old McCook field and at present stationed at Kelly Field, Tex., has been awarded the Distinguished Flying Cross of the war department for his bravery in performing the first free parachute jump and for his numerous subsequent jumps in connection with experimental work in the development of the parachute.

The citation of award reads:

"On May 19, 1919, at McCook Field, Dayton, Ohio, Sgt. Bottrell made the first free jump to be performed by army personnel with a manually operated, free-type parachute.

"At that time, parachute jumping of any kind was considered extremely hazardous. In spite of this, Sgt. Bottrell repeatedly jeopardized his life, while making parachute test jumps from airplanes flying at various speeds and at various altitudes to perfect this parachute.

"By his untiring effort, fearlessness and disregard of personal danger, Sgt. Bottrell aided materially in proving the free type parachute not only possible but practical for airplane use."

Sgt. Bottrell began his parachute test jumping under Maj. E. L. Hoffman, present chief of the equipment branch, Wright Field, and the foremost man in the United States in the development of the parachute, while the latter was still at old McCook Field.

In speaking of Sgt. Bottrell, Maj. Hoffman stated that he was absolutely without fear, and would make a jump under any conditions for test purposes. Maj. Hoffman related one instance in which Sgt. Bottrell had gone through the tail of a plane, cutting his arm severely. It was a high altitude jump, and in the descent Bottrell drifted from over McCook Field to a point on the old Springfield pike. Bottrell had had to prop his arm up in the rigging to prevent too much loss of blood while coming down, but the experience made him none the less dauntless.

Sgt. Bottrell made his first parachute jumps in 1919 from a balloon at various county fairs. Up until 1918 he had made more than 700 jumps from balloons. In 1920 he made a safe jump from a plane at an altitude of 20,000 feet, establishing a high altitude jump.