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Foreword

It is my great pleasure to present another issue of The Wright Flyer Papers. 
Through this series, Air Command and Staff College presents a sampling of 
exemplary research produced by our residence and distance-learning stu-
dents. This series has long showcased the kind of visionary thinking that 
drove the aspirations and activities of the earliest aviation pioneers. This year’s 
selection of essays admirably extends that tradition. As the series title indi-
cates, these papers aim to present cutting-edge, actionable knowledge— 
research that addresses some of the most complex security and defense chal-
lenges facing us today.

Recently, The Wright Flyer Papers transitioned to an exclusively electronic 
publication format. It is our hope that our migration from print editions to an 
electronic-only format will fire even greater intellectual debate among Air-
men and fellow members of the profession of arms as the series reaches a 
growing global audience. By publishing these papers via the Air University 
Press website, ACSC hopes not only to reach more readers, but also to sup-
port Air Force–wide efforts to conserve resources. In this spirit, we invite you 
to peruse past and current issues of The Wright Flyer Papers at https://www 
.airuniversity.af.edu/AUPress/Wright-Flyers/.

Thank you for supporting The Wright Flyer Papers and our efforts to dis-
seminate outstanding ACSC student research for the benefit of our Air Force 
and war fighters everywhere. We trust that what follows will stimulate think-
ing, invite debate, and further encourage today’s air, space, and cyber war 
fighters in their continuing search for innovative and improved ways to de-
fend our nation and way of life.

BRIAN HASTINGS
Colonel, USAF
Commandant

https://www.airuniversity.af.edu/AUPress/Wright-Flyers/
https://www.airuniversity.af.edu/AUPress/Wright-Flyers/
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Abstract

Computational power, data collection, and algorithm capabilities are in-
creasing at an exponential rate. Artificial Intelligence (AI) advances demon-
strate the ability to augment human thoughts and actions in countless areas, 
among which include the Command and Control (C2) of joint airpower. To 
triumph in future wars, the United States requires the capability to create mul-
tiple dilemmas across multiple domains at an overwhelming speed while pre-
venting the enemy from doing the same. AI will provide the cognitive agility 
required to C2 forces in providing this capability overmatch. The side with an 
information advantage and ability to react with high-velocity decision-making 
will decide the outcome of future wars. This paper attempts to familiarize the 
reader with some common types and functions of AI, explores specific appli-
cation areas, and recommends solutions assisting joint targeting using air-
power. The development of a weapon to target a pairing system reveals specif-
ics using an example AI creation process. Along with explaining the 
construction of AI models, this paper also proposes a process for preparing 
and validating AI for operational use and discusses essential implementation 
considerations. The desired end state for AI employment in the C2 of joint 
airpower is efficient human-machine teaming and increased cognitive agility.
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Introduction
General “Hap” Arnold once stated that World War I was won by brawn, 

and World War II was won by logistics.1 The side with an information advan-
tage and the ability to control the conflict in time will win “World War III.” 
Victory in future conflicts will favor the side that can create multiple concur-
rent challenges for their adversary and adapt to environmental changes at 
overwhelming speeds while preventing the enemy from doing the same. 
These future overmatches are possible by leveraging Artificial Intelligence 
(AI) in automation and augmented human decision- making. AI provides 
strength in combining human- level intuitive problem- solving with the speed, 
accuracy, and persistence of machines. Additionally, rapid advances in AI are 
forging novel applications in man- machine collaboration.2 The world is in an 
AI race, and the United States must leverage AI to dominate future wars and 
deter potential adversaries.3

The potential uses of AI in revolutionizing airpower operations range from 
tactical to the strategic. China and Russia are among the nations pursuing an 
AI future, with Vladimir Putin remarking in 2017, “Whoever becomes the 
leader in [artificial intelligence and cyberspace] will become the ruler of the 
world.”4 Beijing’s leaders similarly state, “The rapid development of AI will 
profoundly change human society and life, and change the world . . . China 
must firmly seize the strategic initiative in the new stage of international com-
petition in AI development.”5 Realizing this revelatory potential, the United 
States must strive to maintain dominance and initiate a culture shift toward 
developing and implementing AI automation and machine- man teaming.

To develop the ensuing asymmetric advantage, the United States must pur-
sue novel applications of AI in autonomy and augmenting decision- making. 
By ensuring the lead in AI, the United States can restore the diminishing 
overmatch against any potential adversaries and hence strengthen deter-
rence.6 AI augmentation and autonomy would enable US forces to create mul-
tiple dilemmas across multiple domains at overwhelming speeds, rendering 
human adversaries incapable of reacting if the United States chose to do so. 
This overmatch requires cognitive advantages only possible with AI that 
learns, enhances human performance, better prepares human decision- 
makers, fosters networked solutions, leverages smart devices, coordinates op-
erations, and optimizes the selection and delivery of effects.7 This paper will 
specifically look at providing assistance in joint targeting and assessment in-
side the command and control (C2) of airpower, as an initial implementation 
area. Although the scope of this paper is limited, the United States should 
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seek a higher level of AI autonomy and augmentation across many areas in C2 
to enable the fastest and most practical decision cycles.

The discovery of novel and powerful AI solutions is increasing exponen-
tially, and the US military may be struggling to keep pace with the corporate 
world. The Department of Defense (DoD) budgeted $195 million in 2017 for 
machine learning, $238 million applied to deep learning, and $82 million to-
ward language processing.8 At first glance, these numbers may seem like a 
significant amount of money devoted to AI research; however, DoD invest-
ments and research are growing significantly slower than the corporate sector. 
Between 2012 and 2017, overall DoD investments in AI, big data, and cloud 
research grew at 5.7 percent compound annual growth rate (CAGR).9 Corpo-
rate investments and AI research are skyrocketing at a CAGR of approxi-
mately 35 percent, with AI driving change in how businesses interpret data 
and interact.10 Corporate investments in AI are doubling roughly every two 
years. DoD investments in AI are not keeping pace with corporate invest-
ments or AI’s exponential growth.

C2 of joint airpower has historically been effective at deliberately planning 
operations against less capable adversaries, although it is arguably not efficient. 
Efficiency is likely to be a substantial requirement against a near- peer enemy 
or in a highly dynamic war. The National Defense Strategy states the DoD is 
“over- optimized for exceptional performance at the expense of providing 
timely decisions, policies, and capabilities to the warfighter” and must “deliver 
performance at the speed of relevance.”11 Specifically, joint targeting has proven 
effective but not optimally efficient at directing a large number of assets against 
preplanned targets, as exampled in Desert Storm, Operation Allied Force, and 
Operation Enduring Freedom.12 The United States conducted these deliberate 
operations in a preplanned manner, in relatively small wars, against less capa-
ble adversaries. Deliberate planning typically begins 24–to–72–plus hours 
from operations, while allowing for some exceptions in dynamic targeting.13 
US C2 has reinforced lessons learned from past success against less capable 
adversaries, growing more effective; however, efficiency and agility required 
for combating a near- peer adversary are yet to be developed.

The United States must continuously strive to keep airpower employment 
efficient and agile. As Colonel John Boyd said in Patterns of Conflict, “in order 
to win, we should operate at a faster tempo or rhythm than our adversaries—
or, better yet, get inside the adversary’s observe- orient- decide- action time cy-
cle or loop.”14 AI can supplement human efforts in many areas to significant 
effect and speed. US forces must initiate the next airpower evolution and lever-
age AI to augment human decisions and actions. AI solutions are necessary to 
facilitate the speed, strength, balance, flexibility, and coordination necessary to 
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create multiple dilemmas across multiple domains with speed in a future con-
flict. The United States must remain the leader in air, space, and cyberspace 
power, especially as Russian and Chinese investments in these areas grow.

AI is showing exponential growth in ability and speed in the corporate 
world, disrupting areas from natural language processing to a cancer diagno-
sis. Some experts liken the surge in AI to the invention of electricity in the late 
19th century, stating it will likely start an equally significant transformation of 
industries.15 Advances in AI are making it possible to cede to machines many 
tasks long regarded as impossible for machines to perform. As machine- to- 
machine communications and man- to- machine teaming solutions continue to 
mature, AI will become increasingly prevalent in human- intensive processes.16

One of the most significant areas of AI contribution lies in its ability to 
draw correlations from data, potentially invisible to humans. Sensors and per-
ceivers collect or create data—which then must then be stored, cleaned, and 
structured. Processing turns collected raw data into usable AI fuel. Algo-
rithms can then create models, develop and test insights, draw correlations, 
and detect anomalies for human decision- makers or actors.

AI can simultaneously make decisions on a time scale incomprehensible to 
humans. AI can assist humans with target discovery, intelligence fusion, tar-
get prioritization, commander’s analysis, assessment, force assignment, mis-
sion planning, mission monitoring, and execution. AI will enable rapid deci-
sions across multiple domains and multiple levels of war that humans cannot 
outpace. AI will aggregate, integrate, distill, and present common operational 
pictures and aid in decision- making cycles, achieving effects that humans to-
day cannot grasp. AI may prove capable of shortening the lengthy joint target-
ing cycle into a loop that rapidly updates at varying speeds, quickly reacts to 
environmental changes, and is agile and aggressive. Every area of human 
thought or action is ripe for AI disruption, including airpower employment.17

America must posture itself to respond to relevant information with high- 
velocity decision- making.18 Automation and machine- man teaming will im-
prove and expedite decision- making and tasking cycles in the C2 of airpower. 
Victory in future conflict will go to leaders who can command, control, and 
direct their forces at a pace that overwhelms their adversaries.19 Future wars 
will favor the belligerent leader that can rapidly process information and 
make decisions at each level of war. The warfighting goal is not only to react 
to the enemy quickly; but also it is to drive the fight in directions and at the 
pace of one’s choosing. The belligerent leader that is three steps ahead of the 
enemy will set their adversary “back on their heels,” continually struggling to 
react, and unable to gain the initiative
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This paper attempts to familiarize the reader with AI’s potential and high-
light critical considerations for employment in the C2 of airpower. This pa-
per’s primary focus is to demonstrate the latent AI potential that the United 
States must leverage in tomorrow’s fights. The goal is that the reader will be 
galvanized through specific application examples. The author’s hope is that 
readers will walk away with a fascination and foundational familiarity with 
AI. The required precursor to the development and fielding of the next asym-
metric overmatch is an innovative culture and a desire to adapt, fostered 
through encouraging creative problem- solving and stoking innovative pas-
sions throughout the joint force.

This paper briefly introduces some essential C2 principles and processes— 
setting the stage—and highlights areas for potential AI applications. Second, 
it describes the balance of centralization and some principles of US C2 joint 
airpower. Third, it surveys US joint targeting and target selection processes. 
Fourth, a survey of AI basics and examples of areas for using AI will provide 
a foundation of concepts and common AI types, followed by several examples 
of using AI in military applications. This allows for a discussion of a weapon- 
to- target pairing model that illustrates how to handle data, algorithm selec-
tion, and decision- making with model outputs. The paper then discusses AI- 
aided assessment, including dominant indicators and feedback loops. Finally, 
essential implementation considerations will cover required steps toward 
fielding and changes for successfully building trust and aiding decision- 
makers in the employment of AI solutions in airpower.

Principles of Command and Control (C2) of Airpower
This section will briefly acquaint the reader with some C2 basics in the 

employment of airpower. Succinctly, C2 is “The exercise of authority and di-
rection by a properly designated commander over assigned and attached 
forces in the accomplishment of the mission.”20 Joint air operations are opera-
tions performed by forces made available by the services for joint air tasking.21 
Joint air operations can vary wildly across operational environments and the 
range of military operations; however, it is crucial that the reader have a foun-
dational understanding of the C2 of airpower.

Centralization Versus Decentralized Airpower

US doctrine prescribes the conduct of joint air operations using the principle 
of centralized control and decentralized execution.22 An oversimplified synop-
sis driving this tenet of airpower is that centralization of control enables the 
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senior echelon commanders to control, mass, and lead forces effectively; decen-
tralization of execution allows forces to seize the initiative, respond to uncertain 
and changing environments, and fosters flexibility in lower echelons.

Technological developments frequently shift the equilibrium of this tenet 
of airpower. Robust communications connectivity has increased the shared 
operations picture at all levels, but it has also enabled senior leadership in-
volvement in the finest details of employment.23 This duality has created in-
herent tension between the imperatives of political control and those of effi-
cient mission accomplishment that leaders must understand.24 Although 
centralized control and execution are possible in many situations, a conscious 
effort to delegate execution authority appropriately will ensure the mainte-
nance of US airpower agility.

The balance of centralization and decentralization can shift between and 
during conflicts, and leaders must strive to increase what some call “agility” in 
airpower employment. The Air Force Future Operating Concept defines agility 
as the ability to react rapidly to situations. Agility is a combination of one’s 
flexibility, speed, coordination, balance, and strength.25 Decentralization gen-
erally favors flexibility and speed, while centralization generally favors coor-
dination and strength. One’s understanding of agility might imply physical 
capability, but agility also includes a cognitive capability to react to a dynamic 
opponent, moving target, or shifting environment.26 The power of AI employ-
ment in airpower C2 lies in the cognitive speed and strength it can bring 
synergistically toward the goal of agility.

C2 Structure

C2 systems control joint air operations, typically built around the C2 sys-
tem of the service component commander, that has the preponderance of air 
assets and the most exceptional ability to control them.27 The air operations 
center (AOC) is the senior element of the theater air control system, which 
ensures the effective planning and conduct of air, space, and cyberspace op-
erations. The AOC construct may also apply when fighting with joint or coali-
tion partners as a joint air operations center or a coalition air operations cen-
ter. The size of an AOC can vary wildly between staff in the single digits to 
more than a thousand officers, enlisted, and civilian members. Each AOC’s 
organization differs, but their common goal is to match available means to-
ward tasked military objectives. The responsibilities of the AOC typically in-
clude planning and controlling joint air operations, recommending priorities 
in air apportionment, airspace coordination, air defense coordination, space 
coordination, and cyberspace coordination.
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Technological improvements in computing, communications, and infor-
mation sharing have disrupted the tiered C2 structure creating disruptions 
from operational planning to tactical execution. AOC leadership is capable of 
making decisions historically conducted at lower operational or tactical ech-
elons. Today, for example, the highest levels of operational C2 may not dele-
gate target identification and weapons release authority, which was once only 
possible at the tactical edge. The relative overmatch wielded when facing less 
capable adversaries, and the aversion to civilian casualties and loss of life may 
have lulled the United States into complacency and a false assumption that 
future wars will take place in the same benign environments.28 Increases in 
efficiency and agility needed to defeat near- peer adversaries are possible 
through distributing control outside the AOC, decentralizing the execution 
of air assets, and leveraging AI’s speed and cognitive strength across multiple 
levels of C2.

The C2 of airpower has excellent potential to leverage AI augmentation 
and automation for increased cognitive agility. The next section discusses 
one example of AI use area in airpower C2—joint targeting. There are cur-
rently data gaps and inefficiencies within the targeting cycle that complicate 
the efficient transfer of critical information when planning and executing 
joint air operations.29 The next sections will cover how AI can prepare 
decision- makers with a better understanding of their operating environ-
ment, filter and fuse the fire hose of battlefield data into relevant informa-
tion, and increase decision speeds.

Joint Targeting

Joint targeting’s purpose is to match available means provided to the joint 
force commander (JFC) with ways of employing air, space, and cyberspace 
power to meet military and political ends. It is the process of selecting and 
prioritizing targets and matching the appropriate response to them, consider-
ing operational requirements and capabilities.30 Joint targeting can occur at 
whatever level of war necessary to achieve the JFC’s objectives. Joint targeting 
selects targets, matches desired effects to those targets, and finally selects the 
means capable of delivering the required effects.

Complicating the effort of matching ways and means to targets is the fog 
and friction of war, target duplication, unknowns, integration requirements, 
second and third- order effects, and lack of available resources. Joint Publica-
tion (JP) 3-30, Command and Control of Joint Air Operations, highlights the 
importance of efficiency, stating, “An effective and efficient target develop-
ment process coupled with the joint air tasking cycle is essential for the Joint 
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Force Air Component Commander (JFACC) to plan and execute joint air 
operations. The joint targeting process should integrate the intelligence data-
base, analytical capabilities, and data collection efforts of national agencies, 
combatant commands, subordinate joint forces, and component commands.”31 
This section will discuss how AI can aid in bringing the required efficiency to 
the joint targeting cycle.

To gain efficiency in the joint targeting cycle, the individual steps and au-
tomated connections of steps in the process must gain efficiency. The six 
phases of joint targeting, as shown in Figure 1 include;

1. End state and commander’s objectives development,
2. Target development and prioritization,
3. Capabilities analysis,
4. Commander’s decision and force assignment,
5. Mission planning and force execution, and
6. Assessment.32

1.
End State and
Commander’s

Objectives
2.

Target Development
and Prioritization

4.
Commander’s

Decision and Force
Assignment

5.
Mission Planning

and Force
Execution

6.
Assessment

3.
Capabilities

Analysis

Figure 1: Joint Targeting Cycle (JP 3-60)

AI will likely hasten and optimize target development and prioritization, 
provide near- instantaneous capabilities analysis, rapidly and iteratively plan 
against targets, and automate the development of attack plans.
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C2 staffs conduct joint targeting in the joint air tasking cycle, which is de-
liberate by design but allows for some execution of dynamic targets outside of 
the cycle. The JFACC can change the process to match the environment; how-
ever, the airpower tasking cycle itself remains deliberate and generally fixed in 
duration. Claims of expeditious or efficient dynamic targeting or time- 
sensitive targeting inside the air tasking cycle are relative to past capabilities 
and timeliness. Any “pop- up target” generally requires at least 12 hours for 
action within the air tasking order (ATO) process. Exceptions to this rigidity 
are flexibly tasked assets, planned or launched without a specific target, and 
able to react to real- time opportunities. The agility to reroll deliberately tasked 
assets using the ATO process within the 12-hour window is generally mini-
mal, and the current operations division will likely provide tasking outside 
the normal airpower tasking process. The flexibility and speed required in 
time- sensitive or highly dynamic targeting occurs despite the rigid joint air 
tasking cycle, not with the assistance of it.

One of the most significant difficulties in targeting is the efficient and com-
prehensive melding of targets on varying time scales. The joint forces con-
tinue to discover, prioritize, and pair effects against target sets that may be 
different at the time of execution. Moreover, target development cycles occur 
at different speeds, and sensors may discover high priority targets late in the 
rigid targeting process. The United States requires the ability to adjust to the 
environment and enemy actions as instantaneously as possible. Joint target-
ing cycles assisted by AI could prosecute targets both deliberately and dy-
namically, and be able to match effects and prioritize targets using continually 
updated cycles. When C2 pairs an asset to a high- value “pop- up” target, their 
original target should instantaneously flow back into the targeting solution, 
be re- prioritized, and potentially handed to another strike asset. The scale and 
speed of conducting such a targeting cycle is only possible with the cognitive 
speed and strength of AI. A joint air targeting cycle fueled by AI could be 
deliberately dynamic and continually iterative.

Targets

The definition of targets is any person, place, or thing considered for pos-
sible action to alter, degrade, or neutralize the function it performs for the 
adversary.33 The JFACC prioritizes targets by contribution level toward the 
joint force objectives, probability of achieving the desired effects, the cost of 
engagement, and many other factors.34 Targets can be people, facilities, equip-
ment, or infrastructure; conversely, targets may also have digital capability or 
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be an entity in cyberspace. Target analysis in joint targeting defines not only 
targets but also their strengths, weaknesses, and interconnections.

Planners must document target characteristics in detail so that they can 
develop, correlate, and fuse targets. Characteristics are specific to the target 
type, but can generally include specifics, such as location, size, detailed ap-
pearance, target makeup, dispersion, hardening, electromagnetic signature, 
emitters, and mobility. Humans currently manually input target characteris-
tics, compile targets, correlate targets, eliminate redundancies, and prioritize 
targets through disconnected databases incapable of robust machine- to- 
machine communication.

The JFACC’s staff then prioritizes targets, matches them with effects, and 
tasks their execution with available assets, input, and coordination from 
component commanders. To close the metaphorical feedback loop in target-
ing, assessment teams analyze effects from operations in meeting the mili-
tary objectives. An assessment provides measurements of success that feed 
back into training human decision- makers and could have applications for 
teaching AI systems. This iterative loop reinforces optimal behaviors and at-
tenuates poor behavior.

Why AI?

Implementing AI- aided intelligence fusion and target prioritization could 
dynamically recommend re- tasking assets faster than any human process at 
scale. The current deliberate and dynamic targeting cycles employed in the 
AOC contain minimal automation, are rife with redundant human efforts, and 
lack effective cross- communication. Automating human- intensive tasks inside 
the targeting cycle could tighten the observation, orientation, and decision 
loops. Even basic automation facilitating the effective flow of objectives, tasks, 
targets, characteristics, and weapons between the steps of the cycle would 
shave hours off the processes. More comprehensive AI implementation would 
facilitate near- instantaneous fusion of target characteristics, prioritization to 
match objectives, matching of ordnance, and adjustment of air tasking. One 
goal of AI implementation is to reduce the joint air targeting process from the 
current three- to- five days to one without a fixed duration that also iteratively 
adapts to meet the changing operational environment and threat in real- time.

AI Background
As Pablo Picasso once said of computers: “but they are useless. They can 

only give you answers.”35 The witty insightfulness of his comment implies the 
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inability of computers to ask important questions or express creativity. Pi-
casso would be awestruck, a half- century later, at the apparent creativity ex-
pressed by AI and the deeply perceptive questions they are now capable of 
asking.36 Definitions and the perceptions AI vary, but for this paper, AI is an 
unnatural agent with the ability to learn and adapt to changes, on par or better 
than humans.37 The next section will explore AI as a foundation for later dis-
cussion, and it will differentiate between narrow and general AI with exam-
ples, and then will explore the concept of exponential growth. It will conclude 
with a discussion of when decision- makers should seek AI implementation in 
solving problems.

Types of AI

Narrow AI is AI designed and trained for a specific purpose of limited 
scope38. AlphaGo is one example of narrow AI. AlphaGo was the first ma-
chine to beat world champions in the game of Go in 2015 and 2016, but it 
cannot fold a towel or predict weather conditions.39 Narrow AI has shown 
immense ability to defeat human experts in select areas, but adapting to un-
foreseen environments or different applications proves challenging.

Artificial general intelligence (AGI), in contrast, is AI that can work and 
learn across a broad spectrum of areas.40 An example of an attempt at broaden-
ing toward AGI is Q- network, an AI developed by DeepMind.41 Q- network is 
a deep reinforcement- learning agent that can achieve greater than human- 
level performance on 49 Atari games.42 Q- network’s only inputs are pixels on 
the screen, and it uses the same broad algorithm and model structure across 
the spectrum of games. Q- network is an example of the progress made in high- 
dimensional sensory inputs, “resulting in the first artificial agent that is capable 
of learning to excel at a diverse array of challenging tasks.”43 Although Q- 
network is proficient across multiple types of Atari games, it is not proficient at 
all Atari games. Experts continue to make progress toward AGI, but “general” 
intelligence remains elusive and is more difficult to achieve than narrow AI.

Although AGI currently remains out of reach, engineers are attempting to 
broaden the application of AI in certain areas. By taking a narrow AI and in-
creasing its peripheral application to similar or joined areas, an AI can develop 
breadth beyond its particular narrow focus. An example of the broad applica-
tion of AI is traffic management. An early large- scale implementation of this is 
New York’s “next- generation traffic control system” which controls 12,400 traf-
fic signals, creating the most extensive traffic control system.44 The system in-
corporates time- of- day, construction, motorcades, accidents, unique event 
data, real- time field sensors, radio- frequency identification readers, and cam-
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eras to improve the flow of traffic. By increasing the diverse inputs, learning, 
outputs, and communication means, the system has broadened from its initial 
narrow purpose to overall traffic control. Although the scope has broadened, 
the system does not possess general intelligence applicable outside of its spe-
cific use area. Narrow and broad applications of AI have demonstrated AI’s 
capabilities and have paved the way for future use in the C2 of airpower.

Although AI becomes more and more capable of problem- solving and 
continually increases in breadth and depth, the metaphorical goalposts defin-
ing intelligence keep moving further away. The requirements that define intel-
ligence continually increase with scientific advances. According to McCarthy, 
“as soon as it works, it no one calls it AI anymore.”45 The Turing test—coined 
in 1950 by British mathematician Alan Turing—is an attempted objective test 
of a machine’s ability to demonstrate human- level intelligence.46 The Turing 
test posits that a machine is intelligent if a human judge cannot distinguish a 
machine from a man in a moderate length text- based conversation. Several 
applications of AI have passed the Turing test since it was envisioned, includ-
ing one named Eugene Goostman in 2014.47 Some experts are more skeptical, 
for instance, Ray Kurzweil claims the victory as “premature,” rife with restric-
tions, and able to fool naïve judges.48 Simply defining machine and human 
intelligence is not a straightforward matter.49 Although human perceptions of 
what defines intelligence constantly shifts, AI’s proficiency and use areas con-
tinues to grow at an exponential rate. When assessing AI’s intelligence for 
specific applications, simple metrics can be speed and accuracy when com-
pared to human equivalent operations. Leaders should implement AI solu-
tions capable of performing tasks quicker, cheaper, and more accurately than 
human performance.50

Exponential Growth

An understanding of exponential growth is required for the understanding 
of AI’s potential. Humanity’s technological growth is producing outsized gains 
yearly. One example of exponential growth is Moore’s Law—the number of 
calculations that one can purchase for $1,000 will double roughly every 18 
months. See Figure 2 for a graphical depiction of the exponential growth of 
transistor density.51
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Figure 2: Moore’s Law Transistor Counts

Exponential growth is the growth of a quantity for which the rate of growth 
is directly proportional to the amount present.52 As the amount increases, the 
rate of growth increases. Because humans are comfortable thinking linearly, it 
is sometimes difficult to understand the importance of exponential growth 
upon the future.

There are many examples that explain the importance of exponential 
growth; perhaps the easiest is the invention of the chessboard. Ancient Chi-
nese lore tells of a farmer who invented a game of strategy that was a game-
board— with 64 squares and 32 wooden figures—that he presented to the 
provincial king. The king was overjoyed after the farmer explained the strat-
egy and gameplay that resulted from such a simple invention. The king prom-
ised to reward the farmer with anything the farmer could name for this genius 
idea. The farmer stated that he is a simple peasant farmer, and he does not 
require much in return. All the farmer requested was some grains of rice out 
of the massive provincial stores. Since he invented the 64-square board, he 
proposed payment using the board. On the first square, one grain of rice is the 
reward, and then on each successive square, the payments are doubled—2, 4, 
8, and 16. The king realized the farmer could have asked for gold or any other 
valuable commodity and is overjoyed to render payment in such a humble 
manner. However, less than halfway through the board, the king realizes the 
power of exponential growth. The first square on the fourth row would require 
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a metric ton of rice delivered to the farmer. The outcome of the story differs 
from this point. Half of the stories speak of the peasant taking the king’s 
throne; other versions express the king’s displeasure at being deceived by ex-
ecuting the peasant. Perhaps Earnest Hemmingway explained exponential 
growth the best: “it happens first slowly, then all at once.”53

Humans have a difficult time understanding the implications of exponen-
tial growth. If a human traveled back in time 50 years with a smartphone, 
people would not believe it possible. Today’s smartphones not only have more 
capability than the computers that took the Apollo astronauts to the moon; 
today’s smart phones have more computational power than the National 
Aeronautics and Space Administration (NASA) at that time.54 Some examples 
of areas leveraging exponential growth include data production, data storage 
costs, and computational power. A failure to understand exponential growth 
prevents some from seeing the importance of technology’s impact and its po-
tential. Because of the impact of exponential and combinatorial technological 
change, the future is quite unlikely to be an extension of the present.55 Future 
assumptions, frameworks, and underlying logic will have changed. One can-
not extrapolate forward today’s requirements and situations in predicting to-
morrow’s wars. If the United States does not develop and leverage technology 
to meet tomorrow’s challenges, someone else will.

Data

Humans produce data at exponentially increasing rates; for example, 2017 
produced more data than in the previous 5,000 years combined.56 In addition 
to the advances in data production, the AI algorithms and modeling used to 
interpret the data have also significantly advanced. AI can recognize patterns 
in massive amounts of data, highlighting correlations. AI can predict future 
states or outcomes from model correlations or classifications, sometimes bet-
ter than humans can. The ability to predict future events hinges on the infor-
mation of today’s circumstances mixed with corollary and causal relation-
ships. In theory, the current situational context and all relationships can be 
known or approximated. The challenge with predicting the future lies in the 
small deviations from reality, causing significantly outsized errors, and as hu-
mans, AI is not immune to this pitfall.57

AI cannot exist without data from which to train and learn. AI learning is 
only possible with sufficient amounts of data to draw meaningful correla-
tions. AI not only needs large amounts of data to learn, but it also requires 
structured and applicable data. As an example, think about a house- price pre-
diction model. Some data collected on home sales are more usable for 
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predicting sale prices than others are. Square footage and the number of bed-
rooms will likely correlate more directly to a sales price than the color of the 
house, for example. Having massive amounts of data is critical to learning; 
however, it must contain the correct data.58

The power of data is in its ability to explain the world, often in more ways 
than humans can observe. Computer algorithms previously required pro-
grammers to direct every action the computer took. AI is currently a mixture 
of programmer direction and learning from data. Recent advances in AI show 
possibilities in letting AI design tailored AI for specific applications. Humans 
should leverage AI’s strengths in understanding environments and AI’s ability 
to predict events when they are superior to humans.

Machine Learning

One category of AI is machine learning. Machine learning is a subset of AI 
where machines learn from data without explicitly programmed rules.59 The 
object of machine learning is to find an appropriate model and fit the model 
to the data, instead of using parameters defined by a human. Machine learn-
ing uses training, or “learning,” to adjust the parameters of the model through 
continuous optimization of performance in matching data. In some ways, 
machine learning is more about probabilities and statistics than it is about 
programming and robotics. Some machine learning models are incredibly 
intricate and complicated structures, while others can be straightforward and 
easily understood. To paraphrase Einstein, machine learning models should 
be as simple as possible but no simpler.60 Additionally, data scientists and ma-
chine learning experts must avoid overfitting models to explain data too spe-
cifically.61 The three subcategories of machine learning include supervised, 
unsupervised, and reinforcement- learning as shown in Figure 3.

Figure 3: Types of Machine Learning
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In supervised learning it is typically faster to optimize a model because 
known labels or classifications accompany the input data. For x input, there is 
a known y output. Primary example areas for supervised learning include 
classification and regression.62 A known output allows for the comparison of 
a model’s prediction to the true correlation, classification, or prediction. By 
comparing the model’s prediction to known truth, errors can be iteratively 
calculated and then minimized. The prediction error drives small changes in 
the model. Like a drop of water, attempting to descend an incline, the fastest 
way down is to find the largest descending gradient. Both the water and ma-
chine learning models improve by repetitively running through adjustments 
downward (decreasing error by the steepest gradient). Models trained through 
machine learning run quickly, using minor resources, and can scale as much 
as needed with minor oversight. An additional benefit of supervised learning 
is the ability to update a model’s training to unexpected or unique situations 
using new ‘known truths,’ such as those one might see in the opening days of 
major combat operations.

Unsupervised learning differs from supervised learning in that the output 
or classification of the data may be unknown. Unsupervised learning can use 
unlabeled data. Nobody can teach or supervise the learning of the algorithm 
and model because humans do not necessarily know what to instruct. For 
example, humans can very quickly determine whether a picture contains a cat 
or not, but it would be extremely difficult or impossible for a human to code 
a computer on how to find cat features in pictures without machine learning. 
An example use of unsupervised learning occurred in 2012 when Google pro-
grammers were able to train a neural network on unlabeled data, teaching it-
self to recognize the facial features of humans and cats.63 Some unsupervised 
learning areas include clustering, anomaly detection, adversarial networks, 
and blind signal separation. Unsupervised learning explores data with un-
known or hidden patterns.

The third type of machine learning is reinforcement- learning. 
Reinforcement- learning was inspired partly by theories of animal cognition 
and reinforcement techniques.64 It attempts to learn an optimal policy, through 
trial and error, for sequential decision- making problems, similar to giving a 
dog a treat when performing a trick.65 There are many types of reinforcement- 
learning, but the goal is to achieve the ideal behavior over time by maximizing 
reward. One example of reinforcement- learning is the Q- network example 
mentioned earlier in the broad intelligence discussion. Q- network learned by 
attempting to maximize Atari game scores. The reinforcement- learning re-
warded higher scores, reinforcing specific learned behaviors. Reinforcement- 
learning is useful because of its broad application; however, it can be very 
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memory intensive and costly. Reinforcement- learning was one of the Massa-
chusetts Institute of Technology’s (MIT) Technology Review “10 Breakthrough 
Technologies of 2017,” suggesting it will play a crucial role in achieving AGI.66

Machine learning and prediction is possible because the world is full of 
regularities.67 As Mark Twain said, history does not repeat itself, but it often 
rhymes.68 One of the advantages of machine learning is that it can explain 
unknown or significantly complicated relationships with simpler models by 
discerning underlying correlations. Models can be adjusted for simplicity 
while explaining as much of the data as possible. In machine learning, like 
human learning, the simpler the model, the easier and quicker the learning. 
The downside to simplicity emerges when the assumptions are too broad, cre-
ating errors in explanations or predictions. The world is full of complexity, 
and model optimization requires confidence and accuracy after the simplifi-
cation of complexity. In machine learning, balances occur during selection, 
development, and training, and there is not a cookie- cutter option for ma-
chine learning development. Every application of machine learning is unique 
because every problem and data set is unique.

Neural Networks

Neural networks are one approach to machine learning that many people 
know and their inspiration comes from the human brain’s network of neu-
rons. Some early efforts to create AI developed “neurons” that would “fire” 
when they reached a sufficient threshold from previous neuron inputs.69 This 
coupling of neurons creates a network of nodes that individually participate 
only a minuscule amount, however together they create capability to recog-
nize or react to patterns. See Figure 4 for a graphical depiction of a simple 
neural network.70 In this simple, example neural network, there is one input 
layer, one hidden layer, and one output layer.

Input
Hidden

Output

Figure 4: Neural Network
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The input layer perceives a tiny bit of data from the environment, and then 
acts on its learned perception, sending output to the next layer. The next layer 
is fed by the outputs of the previous layer and acts according to its learned 
behavior to provide outputs to the next layer. The behavior of the input and 
output layers are easy to see and understand. The inputs may be numbers or a 
pixel from a picture. The outputs are typically classifications or regressions 
explaining data. However, it is sometimes difficult to understand the hidden 
layer’s learned behavior because it may have learned behaviors incomprehen-
sible to human observers. The hidden layers might be discovering the edge of 
a picture or a unique feature of a class of objects that human observers may 
not understand. Because of a human’s lack of interpretability from the middle 
layers, they are termed “hidden.” Additionally, if a neural network has multi-
ple hidden layers, it is deemed a “deep neural network.”

Neural networks are efficient as classifiers, providing confidence in corre-
lating an output from input data. They are also capable of performing maxi-
mum likelihood estimation.71 For example, a neural net could provide an im-
agery analyst the likelihood that an image contains a subsonic cruise unarmed 
decoy (SCUD) missile or other specified targets. Each neuron in the neural 
network interprets a small piece of data, with the first row taking in the pixels 
of the image. Subsequent layers of neurons may make more abstract or more 
profound conclusions from there (e.g., an edge or specific image feature) that 
could lead to overall understanding. The output of a neural network could 
either be as simple as providing the likelihood the picture contains a SCUD or 
as complex as trying to classify every object the image contains.

Where to Use AI

AI works well when underlying patterns or correlations exist in data. 
Therefore, one should seek the use of machine learning where correlations 
likely exist, and there is a sufficient amount of training data upon which to 
draw these correlations. Second, the model that attempts to explain the un-
derlying correlations should be simple enough to solve future problems 
quickly. There are exceptions to these generalizations, but these determina-
tions are a good starting point for exploration. AI needs data that contain 
correlations to make conclusions about the environment and predictions. 
Humans are currently more effective at solving novel or unstructured prob-
lems; AI thrives in environments with high correlation.

AI currently shows superiority over humans in several areas. First, ma-
chine learning excels in situations where humans cannot determine the rules 
governing the data or relationships. This determination is possible where a 
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large number of variables exist, there are complicated interconnections of the 
variables, or humans are not able to “label” the data. An example of this would 
be in predicting diseases based on DNA. Unaided, humans would not be able 
to process all the data in one human genome, much less tie correlations from 
thousands of examples. The other niche where machine learning excels is 
when humans may understand correlations, but rules cannot explain them 
through brute force coding. It is easy for humans to recognize handwritten 
characters, but it is prohibitively difficult to program a computer with all the 
rules required to recognize handwriting. AI superiority in this situation 
emerges by the ability to scale the application relatively cheaply. AI reads and 
automatically routes mail, reducing postal service staffing requirements and 
decreasing costs to the consumer. Another area of machine learning potential 
is in performing tasks that humans can accomplish; however, the situation 
regularly changes, and it would be cost- prohibitive for humans to reprogram 
the machines constantly. AI can update perceptions almost instantaneously 
based on billions of data points. An example of this area is Amazon’s recom-
mendation system. Using AI, Amazon updates recommendations for prod-
ucts in near- real- time, tailored explicitly to hundreds of millions of people. AI 
iteratively adapts and learns with changing data where there are too many 
instances to understand or program individually.72 AI is useful in areas where 
humans do not understand the rules governing data, they understand the 
rules but cannot accurately code the solution, or where it would be cost- 
prohibitive or impractical to scale or iteratively adapt the solutions.

Humans maintain relative superiority in areas surrounding creativity, 
originality, responsibility, and empathy.73 Although AI can pen original son-
nets and paint distinctive masterpieces that judges are unable to differentiate 
from human artists, their creativity and originality are always matters of de-
bate. These AI are essentially emulating creativity and originality through 
learning to mimic human examples. These areas of superiority may be erod-
ing, however. One example of this erosion is the transition from DeepMind’s 
AlphaGo, which learned to expertly play Go through analyzing a human 
play, to AlphaGo Zero, which learned solely through reinforcement- learning 
and self- play (not observing human- played games).74 Machines are forcing 
humans to reevaluate the definitions of originality and creativity. Responsi-
bility is perhaps the most “black and white” area currently dominated by 
humans. In the business of war, humans should not delegate responsibility to 
machines because they cannot be held accountable for their decisions and 
actions. Finally, AI is incapable of understanding the intricacies of human 
empathy, morals, beliefs, values, or implicit purposes. AI may learn to simu-
late ethics or follow rules of engagement; however, AI is unlikely to internalize 
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human empathy, or the ability to think critically about human morals, val-
ues, and some actions anytime soon.75

For these reasons, the nature of war will likely remain a predominantly hu-
man endeavor for the predictable future.76 Humans will retain superiority in 
operational design and areas characterized more closely with the “art of war.” 
AI will see a surge in data handling, information fusion, prioritization, analy-
sis, processing, and procedures commonly referred to as the “science of war.’” 
AI will aid humans across the levels of war—ranging from assistance to full 
autonomy—each complementing the other’s strengths and asymmetrically 
applied against an adversary’s weaknesses.

Creating AI Models
The previous sections created a foundation for the reader in joint targeting 

inside airpower C2 and AI basics; the next step is to create an AI framework 
built on top of that foundation. There is an infinite number of ways to ap-
proach each AI application, and this section will explain one generic frame-
work for the nontechnical reader—fear not, there is not any math or pro-
gramming involved! This generic framework will step chronologically 
through;

1. How to identify use areas for AI,
2. How to find and prepare data,
3. How to select the algorithms and generate models, and then,
4. How to create appropriate decision rules and use the outputs.77

A weapon- target pairing model is included as an example in each step to 
add some specificity and understanding of the concepts.

Identify Use Area

The obvious first step in creating a machine learning solution is to identify 
use areas, such as staff- hour intensive or highly repetitive tasks. AI is good at 
solving problems that contain strong correlations or example cases.78 Addi-
tionally, it is essential to remember not to force AI solutions onto problems 
just for the sake of having AI solutions. AI should provide accuracy, speed, 
and/or increased efficiency when addressing a problem.

When analyzing use areas, it is best to start implementation with relatively 
simple problems and work toward complex problems. What problems are 
relatively easy to solve by humans but require massive amounts of time or 
repeat frequently? Joint targeting is an area where humans are easily able to 
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link specific targets to desired effects, but the process changes frequently and 
is staff- hour intensive. Inside joint targeting, several areas would benefit 
from AI: weapon- target pairing, mission- aircraft pairing, target prioritiza-
tion, battlefield situational awareness, blue and red force tracking, system 
node analysis, master air attack plan development, ATO development, and 
target intelligence fusion. This AI example will focus on the use area of 
weapon- target pairing.

Collect and Prepare Data

Data is the fuel that AI requires to learn. The types of data required will 
differ for each application, and human perceptions of what data is necessary 
is a good starting point for the collection. Personal suppositions may provide 
a starting point for data collection but may yield some false correlations, while 
also missing correlations invisible to the human. If there are not any known 
correlations in the data, unsupervised learning may initially determine rela-
tionships without human intuition.

In the example of the weapon- target model, essential data to collect is char-
acteristic data of targets, weapons, and the employment environments. Some 
of the data required from each weapon would include weapon probability of 
kill (Pk) and probability of damage (Pd), lethal effects radius, risk estimate 
distances, reliability rate, circular error probable (CEP), requirements for 
guidance, and availability. Some of the target characteristic data would in-
clude target type, size, number, dispersion, hardening, obstacles, mobility, 
defensive capability, and reflectivity. Environmental data could include area 
threat conditions, electro- optical visibility, infrared visibility, global position-
ing system (GPS) status, and collateral damage concerning distances for peo-
ple and buildings. Some data will be readily available, other data will require 
research or simulation, and some data might require new collection.

Division of data falls into the two basic categories: observation data (in-
put), and results data (output). If the data represents a target or environmen-
tal characteristic, it is observation data. If the data represents an outcome, it 
is results data, such as a weapons Pk or Pd.79 Next, engineers must clean the 
data of anomalies as required, fill in missing data, and standardize the for-
matting.80 Cleaning and structuring the data is often a difficult and laborious 
process. Engineers must structure the data into a usable form to train AI 
models without sacrificing excessive “good” data. After the data collection, 
cleaning, and structuring, engineers select algorithms to create predictive 
models from the data.
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Select the Algorithms

Finding the “best” algorithm can be complicated and time- intensive. The 
good news is that data scientists and engineers have rules of thumb for which 
type of algorithms are stronger or weaker in each application area. The goal of 
selecting an algorithm is to find one that most accurately and easily predicts 
the correct output given the observation data. A simplistic way of thinking 
about algorithm selection is analogous to choosing whether a sine wave, line, 
or logarithmic curve (or some combination of these) can represent data plot-
ted in two dimensions. In algorithm selection, one trains and tests multiple 
types of algorithms if time and computational power allow. For the example 
weapon- target problem, a neural network or nearest neighbor models may be 
the most accurate and confident predictor, so both of these will be developed.

As discussed previously, a neural network is several series of neurons linked 
to the previous row’s neurons, which link to previous rows and eventually link 
back to the input data. Training adjusts the weighting of the links between each 
neuron and/or the threshold that causes the neuron to fire. On one side of the 
network of neurons are the inputs discussed earlier (each unique category of 
observation data), and on the other side of the neural network are the outputs 
(Pk or Pd of each weapon and fusing combination). To train the neural net-
work, the neurons initially receive random weights, and the data adjusts the 
neurons by minimizing the output error. Figure 5 depicts the neural net train-
ing that compares each prediction against the known results and then uses the 
error between them to adjust the neural network parameters.

input
data

output

compare to
known labels

= error

parameter

adjustment

Neural Network
Input

Hidden

Output

Figure 5: Training a Neural Network
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Training iteratively minimizes the error between prediction and reality. 
This method of iterative adjustment provides increased accuracy, yet costs 
some transparency, and may be difficult for humans to understand the mean-
ing of neural network weights.

Conversely, the nearest neighbor is one of the simplest types of machine 
learning. In this weapon- target pairing example, programmers may use it to 
compare to the performance of a neural network. Nearest neighbor models 
compare the characteristics of a target example with those of known examples 
to determine which case best represents the test target characteristic. This is 
similar to how police can predict the gang affiliation of an individual based on 
his or her nearest neighbor’s affiliations. The model is good at classifying new 
cases based on previously collected data.

The weapon- target example would have an increased dimensionality of 
perhaps 10 dimensions. Each dimension represents a target or environmen-
tal characteristic, including: size, type, mobility, armor, GPS availability, and 
so forth. See Figure 6 for a representation of a high- dimensional nearest 
neighbor rendering.

Figure 6: Nearest Neighbor Representation
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Once the algorithms produce trained models, the models enter testing 
against data that engineers previously separated from the training data (this 
prevents overfitting models to training data). Engineers will choose the most 
accurate model if they are of comparable efficiency. If the models produce 
similar performance, engineers will typically select the most efficient model. 
Once trained, models can retrain on new data, as required. AI development is 
a continual process, and operators and information assurance managers 
should work with engineers to maintain and refine AI solutions.

Proceed to Decisions

The model must then translate into a decision or action. Humans must de-
cide how to act on the model’s outputs. For example, the model will produce a 
classification or a likelihood, which can feed decisions with if- then scenarios 
or rules. In the weapon- target example, the model will output the Pk or Pd for 
every weapon and target fusing. Helpful rules to apply to the model outputs 
would include proportionality, minimization of collateral damage, or weapon 
scarcity. These rules could rank- order desired weapons and would limit the AI 
from recommending the use of a nuclear weapon against every target (the 
nuclear weapon is represented as the 1.00 output in Figure 7).

Figure 7: Weapon- Target Pairing Neural Net

Additionally, humans must decide what level of authority to delegate to AI. 
AI may operate without human oversight if it is reliably accurate and operates 
in a relatively low- risk area.81 For example, humans should follow the recom-
mendations of the weapon- target model if it produces the “best” decision 
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95 percent of the time if a human only finds the “best” decision 80 percent of 
the time.82 To help this decision, many types of AI can express confidence 
levels with their predictions. Confidence can be expressed as to how closely 
the test example mirrors data used to train the AI. If the training data was 
insufficient, or the AI does not know how to interpret the example, the confi-
dence may be low. Humans should compare confidence and accuracy with 
humans and other models to decide how much authority to delegate to AI, 
which may be situationally dependent.

Decisions about when a model is accurate enough for use can be difficult, 
and it may be wise to have models shadow humans in training scenarios so 
that they can evaluate their performance and discover potential weaknesses. 
Deciding how much authority to delegate to AI should be a function of risk, 
confidence, and time. Leaders should delegate decisions that require speed in 
low- risk areas while hesitating to delegate high- risk decisions that are less 
urgent—see Figure 8.

Figure 8: Autonomy Levels with Risk and Time

Assessment
Wartime assessment is the act of gathering and making sense of informa-

tion to update one’s beliefs or perceptions about war.83 The process of 
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assessment is a requirement of every level of war, across every domain, and 
leaders should consciously make efforts to ensure the accuracy of the recom-
mendations from assessment processes. Scott Gartner, writing in Assessing 
War, states the three factors making assessment difficult include “wartime in-
formation accrues faster than wartime analytic capacity, leaders need to make 
decisions before they have a clear picture of what is going on, and the infor-
mation environment contains tremendous uncertainty and noise.”84 AI can 
assist humans in areas of speed and large computations, such as those chal-
lenging assessments. Currently assessment “reflects a trade- off between ac-
curacy and speed.”85 AI can increase the speed of assessment; however, it can-
not eliminate information lag. There will always be an inherent delay because 
of the required centralization of assessment and the requirement to collect 
and fuse data. Assessment augmented by AI can constantly iterate analysis 
based on data. In addition to AI assistance in speed and accuracy, this section 
will discuss how humans may leverage AI to mitigate human bias in percep-
tions and processing data.

Targeting assessment is a continuous process that assesses the effectiveness 
in achieving the desired effects. Assessment attempts to measure the effects 
resulting from actions, but effects are often difficult to measure. For example, 
how do leaders measure an enemy’s morale or will to fight? Gauging success 
and objective accomplishment requires concrete measures of success. Scott 
Gartner recommends defining dominant indicators that represent the desired 
effects, which are easier to identify and measure, instead of attempting to 
measure the effects themselves.86

Dominant indicators are flags that can easily identify obscure underlying 
facts and trends invisible to observers. Dominant indicators focus on wartime 
performance metrics, using quantitative, time- based measures of perfor-
mance, to reflect the organization’s mission accomplishment.87 As mentioned 
earlier in the paper, one of the areas where AI typically outperforms humans 
is in determining underlying correlations in data. Using either supervised or 
unsupervised learning, machine- man teaming can develop dominant indica-
tors that statistically correlate to performance and effects. AI can statistically 
show what variables link to objective accomplishment and their levels of im-
portance, instead of relying solely on human heuristics, bias, and cognitive 
shortcuts to determine what assessors think indicates success. AI shows what 
dominant indicators correlate in the data, instead of guessing at a quantitative 
approach to feedback.

The purpose of military assessment is not only to provide decision- makers 
a measure of how well the operations are unfolding, but assessment’s purpose 
is also to create an actionable feedback loop used to adjust perceptions, 
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assumptions, and beliefs about future operations. Assessment closes the feed-
back loop. Assessment is vital in human decision- making, but it is arguably 
more critical in AI applications. Feedback is the only way AI can adapt and 
improve with changes in the environment. Assessment for AI systems occurs 
much in the same way as those for humans, adjusting previous predictions, 
leading to learning and adaptation.

For AI, the results of the assessment should continuously feed back into 
training model behaviors. In the weapon- to- target pairing example, planners 
or machines receive bomb damage assessment (BDA) of a weapon employed 
against a specific target and will update Pk and Pd models as applicable. For 
example, if simulations showed a specific warhead capable of penetrating a 
hardened structure, but the reality shows different results. Humans would ob-
serve the returning BDA reports and adjust their use of that specific warhead. 
In machine learning, the predicted and actual damage comparison and result-
ing error update the models. By iteratively training the model with more BDA 
and highly diverse scenarios, the model converges toward updated truths.

The development of proper measures of success is critical to learning for 
both humans and AI. The act of choosing a set of metrics must reveal infor-
mation about the environment and create proper incentives for its collec-
tion.88 If there is misrepresentation in metrics or the weighting of relation-
ships, negative training can occur. That negative training can result in AI or 
human perceptions that may never converge on reality. For these reasons, 
humans must create clear objectives and goals; operational benchmarks must 
tie the overall goals to identifiable measures of effectiveness (MOE). MOEs 
are tied to measures of performance (MOP).89 Additionally, humans should 
continually assess AI prediction accuracy and provide retraining as necessary. 
AI specialists working within the organization enable timely model adjust-
ment and retraining, shaping the learning that is critical to success. Assess-
ments must continually refine human and AI perceptions enabling adapta-
tion to the environment. If leaders seek incorrect measures of success, both 
humans and machines will optimize incorrect behavior.

Assessment Case Study

An example of ineffective goal setting and assessment was evident in the 
Vietnam War. US leadership developed the operational benchmark of enemy 
“body count.” Leaders thought South Vietnam would stabilize if the Viet 
Cong and North Vietnamese were unable to replace their battlefield losses. 
General Westmoreland highlights the shortfalls of this metric later by stating, 
“[body count] statistics were, admittedly, an imperfect gauge of progress, yet 



27

in the absence of conventional frontlines, how else were we to measure 
[success]?”90 In emphasizing the importance of body count, leadership 
misperceived the real situation in Vietnam. Moreover, in attempting to pull 
information from subordinates toward the operational benchmark of a body 
count, they provided harmful incentives to their subordinates. Soldiers and 
leaders falsely inflated body counts, and illegal and unethical actions resulted 
from attempts to maximize body counts. This case study highlights the im-
portance of goals, operational benchmarks, MOE, and MOP on human and 
AI behavior. The reinforcement of poor behavior is possible in training when 
utilizing incorrect measures and goals.

Bias

Humans instinctively conclude from observations that are sometimes dif-
ficult to explain. Humans also tend to assimilate incoming information to fit 
existing beliefs and expectations.91 Because of the limitations in neuron serial 
processing speeds, cognitive short cuts and heuristics are necessary for hu-
mans to make decisions quickly. The brain does this by classifying and cor-
relating present experiences based on prior learning. The automatic process-
ing, filtering, and categorizing of data results in a brain that is more capable 
overall; however, the shortcuts also create the potential for misleading assess-
ments. This filtering and bias occur at lower levels, such as pattern recogni-
tion, as well as in high- level analysis and assessment. Preexisting beliefs have 
staying power in the face of new information that one might not expect, look-
ing only at the data itself.92 Humans must acknowledge this double- edged 
sword and leverage it for their strengths while mitigating their weaknesses. 
Humans should not attempt to fix, upgrade, or even eradicate what makes us 
human; instead, we should design technology to complement our capabilities 
and limitations.93 Leaders should seek areas where humans are cognitively 
weak, inaccurate, or slow for initial AI implementation while ceding domi-
nance to humans in areas reliant on innovation, originality, and creativity.

Bias decision- making is not limited to humans; AI is not immune to these 
distortions from reality. Bias may influence an AI through the data used in 
training, its algorithm and structure, or through the implementation. Every 
year there are examples of bias AI when the reality is the AI is making deci-
sions and taking action solely based on its programming and training – ex-
perts call this “algorithmic bias.” Examples of algorithmic bias include facial 
recognition programs that are unable to detect black women, advertisements 
displaying fewer high- salary jobs to women, increased recidivism rates pro-
jected for minority males, and Tay the “racist tweeting robot.”94 Data used to 
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train AI models must be free from undesirable bias, or the AI is likely to de-
velop undesirable behavior.

AI can provide greater objectivity to assessment. The process of deciding 
between alternatives can be onerous; it “creates powerful barriers to reconsid-
eration, even when new information casts doubt on the initial choice’s validi-
ty.95 Thus, rather than revisit the original choice, decision- makers discount, 
misinterpret, or ignore new information bearing on that choice.”96 “Decision- 
makers with powerful organizational goals or self- interests may discount or 
minimize incoming information that conflicts with those interests, and high-
light info that supports the . . . coloring our interpretation of data in ways we 
may not recognize.”97 Assessment is an additional area ripe for AI implemen-
tation because of the large amount of data and the possibility for human bias 
skewing perceptions. Humans should leverage AI to augment wartime assess-
ment practices to make them more comprehensive, faster, and objective.

Implementation
Our job is not complete once we have created and trained AI models; the 

ultimate success or failure lies in the implementation details. Transparency 
and control are requirements in creating trust in any AI system. Additionally, 
the human interface and seamless integration of any solution will arguably 
become the keystones to successful implementation. The National Defense 
Strategy recognizes this challenge by stating, “Success no longer goes to the 
country that develops a new technology first but rather to the one that better 
integrates it and adapts its way of fighting.”98 Human operators are likely to 
adopt AI solutions only if they are trustworthy and present a seamless and 
useful interface. The recommended implementations in this paper are not 
likely to happen quickly, nor are they detailed enough for direct implementa-
tion today. The United States must devote research, staffing, and funding to-
ward deliberate implementation processes. Successful implementation and 
change are possible with an agile development approach, by breaking down 
parts of the problem, and producing small victories over time.

The United States cannot implement one large “AI solution” in a single wave 
or by using entirely off- the- shelf solutions. Attempting to develop one widely 
applicable “solution” would be an impossible undertaking because of applica-
tion size, environmental complexity, and organizational resistance to change. 
Iterative improvements to the already existing processes will drive incremental 
change, develop trust, and lead to further developments over time.

In conversations with dozens of academics and experts teaching future AOC 
experts and new AOC division leads, most teachers expressed considerable 
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skepticism toward meaningful AI integration anytime soon. Every individual 
saw the need for this paper; however, the experts quickly followed the encour-
agement with comments detailing how it would have almost no chance of 
implementation because of reliance on the current “way of doing things” and 
the required scope of application. Dogmatic loops are difficult to break, and 
they typically require exogenous shocks to highlight the need for change. The 
perception is not that the AOC is currently “broken,” nor is this paper imply-
ing that. There is, however, the danger of the United States failing to maintain 
“speed of relevancy” and cognitive agility, as talked about in previous sec-
tions.99 The intent of this paper is to attempt to help adjust DoD culture and 
ensure the pursuit of the next asymmetric overmatch against any potential 
adversary.

Organizations and states cling to the technologies and practices they his-
torically value and those that underwrite their current strengths.100 Most ex-
perts agree that the C2 of airpower is effective at fighting today’s wars, but it is 
often inefficient at achieving political ends. Often, leaders choose a policy for 
attaining objectives while simultaneously choosing the objectives them-
selves.101 Additionally, leaders focus attention on incremental “Band- Aid” 
fixes, instead of finding overarching formulations likely to lead to optimal 
outcomes.102 The ultimate questions are:

1.  Will the AOC will be capable of efficient and effective control in tomor-
row’s war against a near- peer adversary?

2.  Will current and future mega- trends render the current means and 
ways of airpower C2 obsolete?

3.  Will it take a colossal failure to highlight the need for change toward 
smarter C2?

Inhibitions caused by our current paradigm, bureaucracy, and organiza-
tional momentum are the most significant barriers in technological develop-
ment and innovation. Ideally, updating the C2 of airpower would take advan-
tage of modern theory and available technology to holistically develop the 
optimal C2 construct. However, there is not a perceived appetite for a complete 
C2 overhaul, and the most likely chance of success is incremental development 
and application of AI solutions that build capability and trust over time.103

Required Changes

Balance of control, functions, processes, structuring, staffing, and leader-
ship roles will likely adjust over time in AI implementation. The current 
tasking mechanics: plan, task, execute, and assess, are likely to remain 
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applicable; however, the organization and method of overseeing these mecha-
nisms may change.104 With adaptive development and implementation of AI 
solutions, leaders will be able to test and exercise systems and observe their 
impacts through incremental change. Tests and exercises should incorporate 
full- scaled versions of operational warfighting constructs to highlight poten-
tial shortfalls and areas for improvement. Effective AI requires massive 
amounts of data that may not be present in small tests or exercises. If future 
wars require rapidly adaptable C2 across multiple domains, the United States 
must develop constructs, forces, processes, tests, and training with that mind-
set. AI will supplement and automate staff- intensive work in some areas while 
creating potential that did not exist in other areas. Some methods of percep-
tion, analysis, dissemination, and decision- making will become alien to 
present- day staff and aircrew.

C2 and AI experts cannot predict precisely how and where they will em-
ploy AI in the future; however, educated guesses toward the process of imple-
mentation are within reach. The following seven steps are recommended for 
successfully fielding AI in the C2 of airpower:

1.  Leaders must ensure the development and distribution of standards for 
architecture, transparency, security, and communications from data 
collection to human or AI action.

2.  The joint forces must develop incubator(s) for AI development, testing, 
and exercising. The joint forces must sufficiently resource these testbeds 
and provide the access required to iteratively develop and improve AI 
solutions across mission sets and levels of war.

3.  Once incubators develop AI solutions, they must test them in simula-
tion. War games must sufficiently mimic asset behavior and replicate 
the real world. Simulation allows new AI testing in a benign and safe 
environment before approved for real- world use.

4.  Joint forces must then test AI in exercises before approved for war. Ex-
ercises conducted from the tactical to operational level provide the abil-
ity to fine- tune perceptions and behaviors, and the ability to develop 
and evaluate employment tactics, techniques, and procedures. The same 
theory of iterative human adaptation and performance improvement 
when incorporating new technology applies to the employment of AI. 
The two example approaches to improving AI behaviors include:

a.  Initially shadowing human decision- makers and learning from 
their behaviors and decisions. After initial learning from human 
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decision- makers, the AI can continue improving through fu-
ture self- learning without human shadowing.

or
b.  Iteratively improve AI decision- making through self- training 

of behaviors over generations of AI models in adversarial learn-
ing or reinforcement- learning environments then compare the 
performance to human actors. During training, humans should 
provide nudges as desirable or undesirable behaviors manifest.

5.  Humans may choose to employ AI once they show superior perfor-
mance compared to humans and other AI. The required levels of per-
formance in each application area will differ and include such factors as 
confidence, time, and risk (see Figure 8). AI certifications should ap-
prove AI employment if the following conditions are met:

a. AI has reached the required performance levels.
b.  AI meets safety requirements, follows applicable rules of en-

gagement, and international laws of armed conflict.
c.  AI meets security requirements, including access to required 

data, confidentiality where required, and integrity assurance of 
data and information flows.

d. AI can communicate with required entities.
e. AI is controllable by humans if required.

6.  As the joint forces employ AI, they should seek adjacent employment 
areas to complement and amplify the effectiveness and efficiency of au-
tomation and augmentation. The incremental implementation of AI 
solutions will gain efficiencies and performance through synergy, com-
monly referred to as the flywheel effect.105

7.  The composition, organization, processes, and speed of joint C2 will 
inevitably change throughout the implementation of AI. Leaders and 
their staff will be responsible for adjusting processes, organizational 
structure, and personal training to leverage the gains from AI.

Leadership efforts in the C2 of joint airpower will undoubtedly look differ-
ent in an AI- augmented fight. Humans will likely spend more time devoted to 
assessment, analysis, and decision- making. With machines rapidly cleaning 
and structuring massive amounts of data, human decision- makers can devote 
more time to what humans are good at—creativity in the operational “art” of 
war, making responsible decisions, and bringing originality to wicked prob-
lem sets. Any injection of human decision- making into AI- heavy cycles will 
inevitably slow the process down. Humans, however, may provide significant 
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risk mitigation and oversight in decision cycles. Leaders must evaluate risk 
acceptance, trust in AI, AI confidence, costs, time constraints, strategic im-
pacts, and potential for unintended effects when deciding when and where 
human decisions are necessary. With broadened AI development and wide-
spread implementation, there become more opportunities for failure. Oppor-
tunities for bugs and hardware failures increase with complexity.106 It is pos-
sible that some level of human- system interaction will continue to be required 
in the future.107 The nature of war will remain a human- centric endeavor. Re-
curring management and maintenance challenges amplify the requirement 
for full- time decision- makers and engineering oversight. Subject matter ex-
perts, engineers, information managers, and decision- makers should work 
hand- in- hand from inception through to fielding.

Creating Trust

Trust is a requirement for any system before handing control over to AI. 
Most current applications of AI perform relatively benign functions, not hav-
ing to make life and death decisions. The initial application of AI in C2 should 
also be in areas where the capability and process would be the most under-
stood, and in areas with low- risk. Over time, application areas will likely in-
crease; however, humans will require transparency, control, and credibility 
before trusting AI partners.

AI and automation develop trust through small victories. Gradual imple-
mentation in low- risk areas will show that AI is capable. For example, humans 
are skeptical in delegating authority in their daily commute over to AI be-
cause driving at high speeds is a risky endeavor; however, hundreds of thou-
sands trust Tesla cars in their daily commute. Humans become comfortable 
and trusting over time through demonstrated capability. Over the years, AI 
has built up the capability to control a vehicle. Initially image recognition 
demonstrated the capability of recognizing objects, such as signs, people, 
cars, and painted lines. Depth perception and free- space algorithms discov-
ered the ability to display drivable area in real- time representations of the 
environment. Finally, the fusion of many forms of AI into driving solutions 
outmatched the average human driver. Tesla built trust in their AI through 
credibility and demonstrating capability.

Transparency also fosters trust through traceability, understanding, and 
validation. AI implemented in moderate- to- high- risk applications must be 
able to show underlying assumptions and trace the method that yielded the 
conclusion. The ability to trace the decision- making process from input to 
output yields understanding, which is sometimes tricky in learning systems. 
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The Future of Life Institute highlighted the issue of transparency and safety in 
2017 when it published 23 AI principles, endorsed by thousands of leading AI 
experts. The institute highlighted “failure transparency” and “judicial trans-
parency” as two requirements in future AI development.108 Plainly stated, AI 
must be able to show why a system malfunctioned and provide satisfactory 
explanation to humans as to why it made specific decisions.109 Transparency 
is a requirement during system design.

Control does not create trust, but a lack of control can quickly destroy any 
trust that previously existed. The ability for a human to perceive the actions 
and intentions of AI, and then be able to direct or change the behavior of any 
system is critical. Leaders must be able to adjust behavior if the policy, strat-
egy, or objectives change. Moreover, if AI is showing improper intentions or 
acting poorly, humans must be able to override its behavior. Although the 
system did not perform as required, the human must be able to exercise con-
trol once recognition of a hazardous situation occurs. Transparency is a re-
quirement for control, and control is a requirement for trust.

War Games and Simulation

As discussed in previous sections, wargaming and simulation are instru-
mental in training AI. Real- world occurrences and past results of actions can 
adjust AI behavior, but this can only teach the AI using specific real- world 
examples. If a scenario has not occurred in the past, the AI will be unprepared 
to deal with it in the future. AI requires the ability to simulate scenarios for 
which it does not have previously collected data to generalize its learning and 
fill in the metaphorical gaps better. Many types of AI will require a simulated 
environment to test relevant scenarios or those likely to occur, but it is im-
practical to test in the real world. By manipulating items, parameters, and 
actions in a simulated world, the AI can observe effects and reinforce proper 
behavior orders of magnitude faster than real world.

Flexible Autonomy

Flexible autonomy refers to the ability of a system to operate with or with-
out a human. Flexible autonomy can initially provide AI implementation, a 
set of “training wheels” until final system validation occurs.110 During initial 
AI application, the human may choose to cede little authority to the AI. Then, 
as the AI learns behavior and optimizes, the AI can take over more and more 
tasks. Flexible autonomy is a metaphorical on- the- job training. Autonomy 
can move from human shadowing, to man- in- the- loop, to man- on- the- loop, 
and finally to man- out- of- the- loop if required.
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The level of human involvement can also shift with risk or under challeng-
ing scenarios. Figure 8 shows the amount of authority delegated to AI as a 
function of time and risk. An AI using varying levels of control is beneficial in 
areas where risk changes. Additionally, an AI that is working with a human 
may be required to operate more autonomously in contested areas or those 
where the enemy attempts to deny communication or access. In these envi-
ronments, flexible autonomy may provide the capability for human oversight 
until it is denied, at which time the AI acts as trained until communication 
with human controllers is regained or mission is achieved.

Decentralized Execution and Data

AI implementation may seem to imply a departure from decentralized ex-
ecution because of the requirements for data and control. Decentralization of 
execution will remain an essential tenet of airpower. Decentralized execution 
is a requirement because of uncertainty, friction, changes, communication 
limitations, and ambiguity. Decentralization allows aircrew to seize the initia-
tive, be responsive to uncertain and changing environments, and fosters flex-
ibility in lower- level commanders. The most significant immediate change in 
airpower execution because of AI implementation is the requirement for in-
creased data collection. As previously discussed, data is a fundamental re-
quirement of AI learning and performance. AI cannot accurately perceive the 
environment and make decisions without sufficient data collection. Future 
leadership will likely highlight data collection and timely reporting require-
ments throughout levels of air operations to ensure the feedback loop is ro-
bust. Commanders must clearly express intent to operators and assist their 
decentralized execution, giving them the proper tools and situational aware-
ness to execute upon intent. Operators owe timely and accurate truth data 
and reliably accurate execution to their commanders in return for delegated 
execution authority.

Conclusion
The C2 of airpower needs a technological overhaul to project air power in 

tomorrow’s wars efficiently. History has shown that those who adapt too 
slowly or fail to foresee crucial pivot points will suffer defeat or even extinc-
tion.111 The world is in the beginning stages of waking up to the immense 
power and exponential growth of AI. Innovative solutions in AI can bring the 
C2 of airpower into the 21st century. By creating systems and decision- 
making processes that are capable of outpacing our adversary, the United 
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States can maintain dominance in airpower employment. By creating multi-
ple dilemmas for our adversaries across multiple domains, we may direct the 
fight—one step ahead and in the direction of our choosing.

The first step in developing AI solutions is identifying potential areas of 
implementation. The author chose to discuss the example of AI in joint tar-
geting, but there are many areas for augmentation and automation in air-
power C2 alone. After identifying a use area, collect pertinent data. AI re-
quires data to understand the environment and create simplified models to 
make predictions. It may be necessary to deploy sensors and seek additional 
methods to collect the data, where it is not available. Data scientists and engi-
neers then filter, clean, and structure the data to meet the situational require-
ments driven by AI development. The collection of required data and its 
cleaning is typically the majority of the work in AI development.

After the pertinent data is collected, algorithm selection and training cre-
ate models to explain realities. There is an infinite number of algorithms and 
structures, and there is not a “cookie- cutter” solution to every problem. Trial 
and error, training, and comparing models will iteratively show the optimal 
ways of looking at the problem and its solutions. Once the most accurate and 
efficient algorithm is selected, drafting deterministic rules can commence, 
and the model is trained. Leaders must determine how they will use the out-
puts of the AI and what level of control to delegate. Risk, time, and confidence 
all play into the level of automation delegated to AI.

AI has developed strong footholds in the corporate world, but airpower 
has few examples of any significant AI employment. To maintain superiority 
in the international security realm, the United States must discover and de-
velop innovative AI solutions. Russia and China are increasing investments in 
AI as a strategic technology, seeking to “seize the strategic initiative in the new 
stage of international competition in AI development, to create new competi-
tive advantage.”112 By exploiting advances in AI and autonomy, the United 
States can restore its diminishing overmatch versus potential adversaries and 
strengthen deterrence. The complexity and speed of modern warfare have 
outpaced our ability to C2 it. The side with an information advantage will 
determine the outcome of future wars and be able to respond instantaneously 
with high- velocity decision- making while creating complex and simultane-
ous dilemmas for the enemy.113 This future capability is far from assured; the 
United States must fight to guarantee this agility overmatch enabled by AI 
autonomy and augmentation.
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https://www.af.mil/News/Article-Display/Article/1108931/csaf-letter-to-airmen/
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Abbreviations

ACSC Air Command and Staff College
AGI Artificial General Intelligence
AI Artificial Intelligence
AOC Air Operations Center
AOD Air Operations Directive
ATO Air Tasking Order
BDA Bomb Damage Assessment
C2 Command and Control
CAGR Compound Annual Growth Rate
CEP Circular Error Probable
DoD Department of Defense
DoDD Department of Defense Directive
GPS Global Positioning System
JFACC Joint Force Air Component Commander
JFC Joint Force Commander
JP Joint Publication
MIT Massachusetts Institute of Technology
MOE Measures of Effectiveness
MOP Measures of Performance
NASA National Aeronautics and Space Administration
Pd Probability of Damage
Pk Probability of Kill
SCUD Subsonic Cruise Unarmed Decoy (Missile)
US United States
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