

The Air Force Cyber College thanks the Advanced Cyber Engineering program at the Air
Force Research Laboratory in Rome, NY, for providing the information to assist in educating
the general Air Force on the technical aspects of cyberspace.

Hands-on Keyboard: Cyber Experiments for Strategists

and Policy Makers

Boolean Algebra and Access Control Logic

1. Introduction and Objectives
This exercise covers the basics of the binary and hexadecimal number systems, as well as

different methods for binary and hexadecimal conversion. In order to understand Access Control
Logic, we introduce Boolean Logic, Set Theory, and Kripke Structures.

The objectives of this exercise are to
• Understand the binary and hexadecimal number systems and be able to convert between

the two.
• Understand Boolean Logic.
• Be able to complete Set Theory proofs and relations.
• Understand the basics of Access Control Logic.

2. Binary and Hexadecimal Number Systems
We are all familiar with counting in the decimal system. Although we may not realize it,

counting in binary and hexadecimal works in the same manner, the difference being binary has 2
unique symbols while hexadecimal has 16. The quantity of symbols in a numbering system
corresponds to the base of the system. Binary (base two) counts in powers of 2, whereas

hexadecimal (base sixteen) counts in powers of 16. This makes sense when we take into account
that decimal (base 10) counts in powers of 10.

 Binary
The binary number system consists solely of 1s and 0s. Each binary digit is a bit. Each bit

is a power of 2. The table below shows the values of the powers of 2 starting with the 0th bit and
ending with the 7th bit.

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
28

6
4

3
2

1
6

8 4 2 1

We can represent the positive numbers 0–127 with this 8-bit table. Note: 128 cannot be
represented because we begin counting at 0, not 1. Hence, the largest positive number we can
represent given n bits is 2𝑛𝑛 − 1.

 Binary to Decimal Conversion
In order to convert a number from binary to decimal, we add the power of two that

corresponds to the location of a 1 in the binary representation.
For example, to convert the binary representation 1010 to decimal, for each 1, calculate

the corresponding power of 2 and sum them. Ignore all 0's. The chart below breaks down each
step of the conversion process.

Binary 1 0 1 0
Exponent 23 22 21 20
Calculate

d
8 4 2 1

Action Add 8 Ignore Add 2 Ignore
Decimal 10

In the above table, we added 8 and 2 together because their bit location contain a 1. This

results in the decimal number 10, which is indeed the number represented. The following table
shows the binary values for the decimal numbers 0-10.

B
inary

Exponent D
ecimal

0
000

0 + 0 + 0 + 0 0

0
001

0 + 0 + 0 + 20 1

0
010

0 + 0 + 21 + 0 2

0
011

0 + 0 + 21 + 20 3

0
100

0 + 22 + 0 + 0 4

0
101

0 + 22 + 0 + 20 5

0
110

0 + 22 + 21 + 0 6

0
111

0 + 22 + 21 + 20 7

1
000

23 + 0 + 0 + 0 8

1
001

23 + 0 + 0 + 20 9

1
010

23 + 0 + 21 + 0 1
0

As a side note, a short cut to read shorter binary numbers is to read the sequence from left

to right. The numbers are summed starting from 0. The first 1 is kept as the current sum. With
each subsequent 0, double the previous sum. For each 1 double the previous sum and add 1. For
example, given the binary string 01001, reading from left to right, the table below demonstrates
how to calculate the correct decimal number of 9. The current digit at each step is bold and
underlined in the following table:

B
inary

Notes/Instruction Previo
us Sum

Curre
nt Sum

0
1001

Have not hit a 1 yet,
so ignore

0 0

0
1001

Hit first 1
Start adding from 1

0 1

0
1001

Double previous
sum

1 2

0
1001

Double previous
sum

2 4

0
1001

Double previous
sum and add 1

4 9

 Hexadecimal
The numbering system we grow up with only has ten unique symbols (0-9). Therefore, to

represent hexadecimal numbers, we need additional symbols. We utilize the letters A through F
to supply the additional six symbols. Therefore, hexadecimal numbers are represented with the
symbols 0 through 9 and A through F where A through F represent the numbers 10 through 15
respectively.

 Hexadecimal to Decimal
In order to convert hexadecimal to decimal, we add the quantity of the numeric value of

the hexadecimal value times sixteen to the power of the hexadecimal location for hexadecimal
numbers. For example, the following converts the hexadecimal value 2AF3 to decimal:

Hexadecimal Equivalent
Character

Location Conversion

2 2 3 (2 × 163)
A 10 2 (10 × 162)
F 15 1 (15 × 161)
3 3 0 (3 × 160)

2𝐴𝐴𝐴𝐴3 = (2 × 163) + (10 × 162) + (15 × 161) + (3 × 160) = 10995

 Hexadecimal to Binary
Each hexadecimal value represents four binary values. Hexadecimal shortens binary

notation as it is a more compact representation. The following chart shows the binary and
hexadecimal equivalencies.

D
ecimal

B
inary

Hexa
decimal

0 0
000

0

1 0
001

1

2 0
010

2

3 0
011

3

4 0
100

4

5 0
101

5

6 0
110

6

7 0
111

7

8 1
000

8

9 1
001

9

1
0

1
010

A

1
1

1
011

B

1
2

1
100

C

1
3

1
101

D

1
4

1
110

E

1
5

1
111

F

For example, to convert 1010010101110010 to hexadecimal, we break the binary

representation down into groups of four:
1010010101110010 = 1010 0101 0111 0010
Using the chart above or by converting from binary to decimal as we just learned, we can

replace each four bits with their hexadecimal representation:
1010 0101 0111 0010 = A 5 7 2 = A572
Using the same method, we can represent the hexadecimal number A4B7F in binary.
A 4 B 7 F
= 1010 0100 1011 0111 1111
= 10100100101101111111

 Windows Calculator
A useful trick for converting between binary, decimal, and hexadecimal is present in the

Windows Calculator. To open the calculator, click Start, type calculator in the search bar, and hit
enter. Once the Windows Calculator is open, click View → Programmer.

To convert a number from one system to another, first select your starting system (Hex,

Dec, Oct, or Bin) by clicking on its radial button. Then, type the number you wish to convert
from that system. Now, click the radial button for the system to which you want to convert the
number.

 Exercises
Convert the following binary numbers into decimal:

1. 10010000
2. 00000001
3. 01110010
4. 00000100
5. 00100100

Convert the following decimal numbers into binary:
1. 63
2. 95
3. 112
4. 46
5. 50

Convert the following hexadecimal numbers into binary and decimal:
1. F4B5C
2. 2A
3. 13C
4. DAD
5. 2C4E

3. Boolean Algebra: Truth Tables and Logic Operators
In Boolean Algebra, a 1 is true and a 0 is false.
A truth table is used to compute the functional values of logical expressions. Negation (¬)

produces a value of true if its operand is false and a value of false if the operand is true (NOT p).
N

egation

p

Logical conjunction (˄) returns true if both values are true (p AND q are true).

Conj
unction

˄q

Logical disjunction (˅) returns true if at least one operand is true (p OR q is true).

Disj
unction

˅q

Exclusive disjunction (⊕) produces a value of true if ONLY one operand is true, not both

(p XOR q).
Exclusive

Disjunction

p

⊕q
 0
 1

 1
 0

Negation, conjunction, disjunction, and exclusive disjunction can be combined. Truth

tables can be used to determine the value. The truth table below demonstrates the step by step
method for calculating (p ˅ ¬q) ⊕(p ˄ q).

(p ˅ ¬q) ⊕(p ˄ q)

p q ¬q
(p ˅

¬q)
(p ˄ q)

(p ˅ ¬q)
⊕(p ˄ q)

0

0 1 1 0 1

0

1 0 0 0 0

1

0 1 1 0 1

1

1 0 1 1 0

4. Sets and Relations

 Definitions and Notation
• A set is a collection of well-defined and distinct objects. Set elements are contained in

brackets, as in {𝑥𝑥1, 𝑥𝑥2, . . . 𝑥𝑥𝑛𝑛}. Note: the order of elements in a set does not matter;
therefore, {𝑥𝑥1, 𝑥𝑥2} is the same as {𝑥𝑥2, 𝑥𝑥1}.

• The empty set is the set that has no elements. The empty set is denoted as { } or ∅.
• The set union of two sets A and B is the collection of all elements in either A or B. The

union of A and B is denoted A ∪ B.
1. A = {blue, red}
2. B = {blue, green}
3. A ∪ B = {blue, red, green}

• The set intersection of two sets A and B is the collection of all elements in A and B. The
intersection of A and B is denoted A ∩ B.

4. A = {blue, red}
5. B = {blue, green}
6. A ∩ B = {blue}

• The set difference of two sets A and B is the collection of all elements in one that are not
in the other. The set difference of A and B is denoted A - B. The collection of all elements

in B that are not in A is denoted B - A. Set difference can also be denoted with \ instead of
-.

7. A = {blue, red}
8. B = {blue, green}
9. A - B = {red}
10. B - A = {green}

• To indicate that x is or is not an element of a set, S, we write x ∈ S to say that x is an
element of S and we write x ∉ S to say that x is not an element of S.

11. A = {blue, red}
12. blue ∈ A
13. green ∉ A

• A set, S, is a subset of another set, T, if every element of S is also an element of T. It may
be helpful to think of the subset symbol, ⊆, as a “c” for “is contained within.” Note: the
empty set is a subset of every set and every set is a subset of itself.

14. S = {1, 2, 4}
15. T = {1, 2, 4, 7, 10}
16. S ⊆ T
17. T ⊆ T
18. ∅ ⊆ T

• The power set of a set, S, is the set of all subsets of S. The power set is denoted Ƥ(S).
19. S = {1, 2, 4}
20. Ƥ(S) = { { }, {1}, {2}, {4}, {1, 2}, {1,4}, {2, 4}, {1, 2, 4} }

• The Cartesian product of sets A and B is the set of ordered pairs whose first component is
drawn from A and whose second component is drawn from B. Cartesian products are
denoted A × B. Note: in set notation, the pipe, “|,” reads “such that” or “given that.”

21. 𝐴𝐴 × 𝐵𝐵 = {(𝑎𝑎, 𝑏𝑏) |𝑎𝑎 𝜖𝜖 𝐴𝐴, 𝑏𝑏 𝜖𝜖 𝐵𝐵}
22. A = {1, 3, 5}
23. B = {2, 4, 6}
24. 𝐴𝐴 × 𝐵𝐵 = {(1, 2), (1, 4), (1, 6), (3, 2), (3, 4), (3,6), (5, 2), (5,4), (5,6)}

• A binary relation is a set 𝑅𝑅 ⊆ 𝐴𝐴 × 𝐵𝐵 of pairs whose first components are drawn from A
and whose second components are drawn from B. R is a binary relation over (or on) A
when 𝑅𝑅 ⊆ 𝐴𝐴 × 𝐴𝐴.

• The composition of relations 𝑅𝑅1 ⊆ 𝐴𝐴 × 𝐵𝐵 and 𝑅𝑅2 ⊆ 𝐵𝐵 × 𝐶𝐶 is the relation 𝑅𝑅1° 𝑅𝑅2 ⊆
𝐴𝐴 × 𝐶𝐶 as defined as follows:

25. 𝑅𝑅1 ∘ 𝑅𝑅2 = {(𝑥𝑥, 𝑧𝑧)|𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑥𝑥𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒 𝑦𝑦 𝑒𝑒𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 ((𝑥𝑥,𝑦𝑦) ∈ 𝑅𝑅1𝑎𝑎𝑎𝑎𝑎𝑎 (𝑦𝑦, 𝑧𝑧) ∈ 𝑅𝑅2)}
• The image of R under a where R is the relation 𝑅𝑅 ⊆ 𝐴𝐴 × 𝐵𝐵 and 𝑎𝑎 ∈ 𝐴𝐴 is the set of

elements in B related to 𝑎𝑎 by the relation R.
26. 𝑅𝑅(𝑎𝑎) = {𝑏𝑏 ∈ 𝐵𝐵 | (𝑎𝑎, 𝑏𝑏) ∈ 𝑅𝑅}
27. 𝑅𝑅 = {(1,2), (2,3), (2,4), (3,5), (3,1), (4,1), (5,2)}
28. 𝑅𝑅(2) = {3, 4}

29. 𝑅𝑅(3) = {5, 1}

 Examples and Exercises

 Example

1. Let A = {1, 2, 3, 4, 5} and B = {0, 3, 6}.
a. A ∪ B = {0, 1, 2, 3, 4, 5, 6}
b. A ∩ B = {3}
c. A - B = {1, 2, 4, 5}
d. B - A = {0, 6}

2. Let A = {1, 2} and B = {a, b, c}.
a. A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}
b. B × A = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}

 Exercises

1. Let A = {a, b, c, d, e} and B = {a, b, c, d, e, f, g, h}. Find
a. A ∪ B
b. A ∩ B
c. A - B
d. B - A

2. Let T and U be relations over the set A = {1, 2, 3, 4}, as follows: 𝑇𝑇 =
{(1, 1), (2, 1), (3, 3), (4, 4), (3, 4)} and 𝑈𝑈 = {(2, 4), (1, 3), (3, 3), (3, 2)}.

a. Ƥ({x, y, z})
b. U(3)
c. U(4)
d. T ∪ U
e. T ∩ U
f. T - U
g. U ∘ T
h. T ∘ U

3. Let A = {a, b, c}, B = {x ,y}, and C = {0 ,1}. Find
a. A × B × C
b. C × B × A
c. C × A × B
d. B × B × B

 Approaches for Mathematical Proofs

 Properties

• Transitivity: If A is a set such that x ∈ A and y ∈ x then y ∈ A. For example, an apple is a
type of edible fruit. Edible fruits are food. Therefore, an apple is food.

• Equivalence: Two sets are equal provided that each is a subset of the other. That is, if A
and B are sets and A ⊆ B and B ⊆ A then A = B. Colloquially, A has the exact same
elements as B.

 Example Proof

Prove the following:
If A, B, and C are sets then A ∩ (B ∩ C) = (A ∩ B) ∩ C.
Since we are claiming the equivalence of two sets, we must show that each set is a subset

of the other. This gives us two steps: ① shows A ∩ (B ∩ C) ⊆ (A ∩ B) ∩ C, and ② shows (A ∩
B) ∩ C ⊆ A ∩ (B ∩ C). As stated in Section 4.1, a set is a subset of another if every element in the
smaller set is in the larger set. To show that A ∩ (B ∩ C) ⊆ (A ∩ B) ∩ C, choose an arbitrary
element x ∈ A ∩ (B ∩ C) and show that x ∈ (A ∩ B) ∩ C.

① Show 𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶) ⊆ (𝐴𝐴 ∩ 𝐵𝐵) ∩ 𝐶𝐶.
 Let 𝑥𝑥 ∈ 𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶). Show 𝑥𝑥 ∈ (𝐴𝐴 ∩ 𝐵𝐵) ∩ 𝐶𝐶.
⇒ 𝑥𝑥 ∈ 𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶)
⇒ 𝑥𝑥 ∈ 𝐴𝐴 and 𝑥𝑥 ∈ (𝐵𝐵 ∩ 𝐶𝐶) by the definition of set intersection
⇒𝑥𝑥 ∈ 𝐴𝐴 and 𝑥𝑥 ∈ 𝐵𝐵 and 𝑥𝑥 ∈ 𝐶𝐶 by the definition of set intersection
⇒𝑥𝑥 ∈ 𝐴𝐴 ∩ 𝐵𝐵 and 𝑥𝑥 ∈ 𝐶𝐶
⇒ 𝑥𝑥 ∈ (𝐴𝐴 ∩ 𝐵𝐵) and 𝑥𝑥 ∈ 𝐶𝐶
⇒ 𝑥𝑥 ∈ (𝐴𝐴 ∩ 𝐵𝐵) ∩ 𝐶𝐶
By showing that any arbitrary x in 𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶) is also in (𝐴𝐴 ∩ 𝐵𝐵) ∩ 𝐶𝐶, we have shown

that 𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶) ⊆ (𝐴𝐴 ∩ 𝐵𝐵) ∩ 𝐶𝐶.
② Show (𝐴𝐴 ∩ 𝐵𝐵) ∩ 𝐶𝐶 ⊆ 𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶).
Let 𝑥𝑥 ∈ (𝐴𝐴 ∩ 𝐵𝐵) ∩ 𝐶𝐶. Show 𝑥𝑥 ∈ 𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶).
⇒ 𝑥𝑥 ∈ (𝐴𝐴 ∩ 𝐵𝐵) ∩ 𝐶𝐶
⇒𝑥𝑥 ∈ (𝐴𝐴 ∩ 𝐵𝐵) and 𝑥𝑥 ∈ 𝐶𝐶 by the definition of set intersection
⇒𝑥𝑥 ∈ 𝐴𝐴 and 𝑥𝑥 ∈ 𝐵𝐵 and 𝑥𝑥 ∈ 𝐶𝐶 by the definition of set intersection
⇒ 𝑥𝑥 ∈ 𝐴𝐴 and 𝑥𝑥 ∈ 𝐵𝐵 ∩ 𝐶𝐶
⇒ 𝑥𝑥 ∈ 𝐴𝐴 and 𝑥𝑥 ∈ (𝐵𝐵 ∩ 𝐶𝐶)
⇒ 𝑥𝑥 ∈ 𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶)
By showing that any arbitrary x in (𝐴𝐴 ∩ 𝐵𝐵) ∩ 𝐶𝐶 is also in 𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶), we have shown

that (𝐴𝐴 ∩ 𝐵𝐵) ∩ 𝐶𝐶 ⊆ 𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶).
Since each set is a subset of the other, we can conclude that 𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶) = (𝐴𝐴 ∩ 𝐵𝐵) ∩

𝐶𝐶.

5. Syntax

 Principal Expressions
Principals are the major actors in a system. The class of principals includes (but is not

limited to) people, processes, cryptographic keys, personal identification numbers (PINs),
userID-password pairs, and so on. The following are all allowable principal names: Alice, Bob, the
key 𝐾𝐾𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, the PIN 1234, and the userID-password pair 〈Alice, bAdPsWd!〉.

Compound principals connote a combination of principals. For example, “the President
in conjunction with Congress” connotes a principal comprising of both the president and
Congress. Also, “the reporter quoting her source” connotes a principal that comprises both the
reporter and her source.

A principal expression is a name, an expression of the form P & Q or an expression of the
form P | Q. The principal expression P & Q denotes the principal “P in conjunction with Q.” The
principal expression P | Q denotes the principal “P quoting Q.” Parentheses can be added to
disambiguate compound principal expressions. For example, (Sal & Ted) | Uly denotes the
conjunctive principal Sal & Ted quoting the principal Uly. In contrast, Sal & (Ted | Uly) denotes
the principal Sal in conjunction with the principal Ted quoting the principal Uly. The standard
convention in such expressions is that & binds more tightly than |, so Sal & Ted | Uly is
equivalent to (Sal & Ted) |Uly.

 Access Control Statements
We must determine with precision and accuracy which access requests from which

principals should be granted and which should be denied. We need to be able to express our
assumptions and our expectations as to which authorities we trust, which principals should be
granted access to which objects, and so on. We represent basic requests such as “read file foo” or
“modify file bar” by propositional variables. We need some way of accounting for the source of
the request. In our logic, we can associate requests with their source by statements of the form

P says φ

where P is the principal and φ is a specific statement. For example, if rff is a propositional
variable representing the request “read file foo,” then we can represent Deena’s request to read
file foo by the statement

Deena says rff.

The says operator can also ascribe non-request statements to particular principals. For
example, we may wish to express that Rob believes that Deena is making a request to read file foo.
We can express this by the statement

Rob says (Deena says rff).

Access policies specify which principals are authorized to access particular objects. Such
authorizations can be expressed in our logic by statements of the form

P controls φ.

where P is the principal and φ is a specific statement. For example, we can express Deena’s
entitlement to read the file foo as the statement

Deena controls rff.

Like authorizations, jurisdiction is represented by statements of the form

P controls φ

where P is a principal with jurisdiction over the statement φ.
In order to make statements about the relative trust level of different principals, we use

the operator ⇒ (pronounced “speaks for”). The statement

P ⇒ Q

describes a proxy relationship between the two principals P and Q such that any statement made
by P can also be safely attributed to Q.

We also make use of the standard logical operators: negation (¬φ), conjunction (𝜑𝜑1˄𝜑𝜑2),
disjunction (𝜑𝜑1˅𝜑𝜑2), implication (𝜑𝜑1 ⊃ 𝜑𝜑2), and equivalence (𝜑𝜑1 ≡ 𝜑𝜑2). According to standard
conventions, ¬ binds the most tightly, followed in order by ˄, ˅, ⊃ and ≡.

 Well-Formed Formulas
Principal names and propositional variables will be distinguished by capitalization.

Specifically, we use capitalized identifiers such as Josh and Reader for simple principal names. We
use lowercase identifiers such as r, write, and rff for propositional variables.

 Backus-Naur Form (BNF)

Backus-Naur Form is a notation used to describe context-free grammars. Those of you
familiar with compilation, programming, or protocols are already familiar with context-free
grammars, even if you do not realize it.

The set Form of all well-formed expressions in our language is given by the following
BNF specification:

Form ::= PropVar / ¬Form / (Form ˅ Form) / (Form ˄ Form) / (Form ⊃Form) /
(Form ≡ Form) / (Princ ⇒Princ) / (Princ says Form) / (Princ controls Form)

We define a nonterminal statement as a sequence of terminal or nonterminal statements.
The above BNF specification provides all the information necessary to determine the structure of
well-formed formulas in access control logic.

 Examples

The following are well-formed formulas:
• r
• ((¬q ˄ r) ⊃ s)
• (Jill says (r ⊃ (p ˅ q)))

The following syntactic derivation demonstrates that (𝐽𝐽𝑒𝑒𝐽𝐽𝐽𝐽 𝑒𝑒𝑎𝑎𝑦𝑦𝑒𝑒 �𝑒𝑒 ⊃ (𝑝𝑝 ˅ 𝑞𝑞)�) is a well-
formed formula:

Form ⇝ (Princ says Form)
 ⇝ (PName says Form)
 ⇝ (Jill says Form)
 ⇝ (Jill says (Form ⊃ Form)
 ⇝ (Jill says (PropVar ⊃ Form)
 ⇝ (Jill says (r ⊃ Form)
 ⇝ (Jill says (r ⊃ (Form ˅ Form)))
 ⇝ (Jill says (r ⊃ (PropVar ˅ Form)))
 ⇝ (Jill says (r ⊃ (p ˅ Form)))
 ⇝ (Jill says (r ⊃ (p ˅ PropVar)))
 ⇝ (Jill says (r ⊃ (p ˅ q)))
The following examples are not well-formed formulas, for the reasons stated:

• Orly & Mitch is a principal expression but not an access-control formula.
• ¬Orly, because Orly is a principal expression but not an access-control formula. The

negation operator ¬ must precede an access-control formula.
• (Orly ⇒ (p ˄ q)) because (p ˄ q) is not a principal expression. The “speaks for” operator

⇒ must appear between two principal expressions.
• (Orly controls Mitch) because Mitch is a principal expression, not an access-control

formula. The controls operator requires its second argument to be an access-control
formula.

 Exercises
1. Which of the following are well-formed formulas in the access-control logic? Support

your answers by appealing to the BNF specification.
a. ((p ˄ ¬q) ⊃ (Cal controls r))
b. ((Gin ⇒ r) ˄ q)
c. (Mel | Ned says (r ⊃ t))
d. (¬t ⇒ Sal)
e. (Ulf controls (Vic | Wes ⇒ Tori))
f. (Pat controls (Quint controls (Ryne says s)))

2. Fully parenthesize each of the following formulas:
a. p ⊃ ¬q ˅ r ⊃ s

b. ¬p ⊃ r ≡ q ˅ r ⊃ t
c. X controls t ˅ s ⊃ Y says q ⊃ r
d. Cy controls q ˄ Di controls p ⊃ r
e. Ike ⇒ Jan ˄ Kai & Lee controls q ˄ r

6. Kripke Structures

 Definition
A Kripke structure, M is a three-tuple 〈W, I, J〉, where:

• W is a nonempty set, whose elements are called worlds
• I: PropVar →Ƥ(W) is an interpretation function that maps each propositional variable to

a set of worlds
• J: PName→Ƥ(W ×W) is a function that maps each principal name to a relation on worlds

(i.e. a subset of W × W).
The concept of worlds is abstract. In reality, W is simply a set. The functions I and J

provide meanings for our propositional variables and simple principals. I(p) is the set of worlds
in which we consider p to be true. J(A) is a relation that describes how the simple principal A
views the relationships between worlds. Each pair (w, w') ∈ J(A) indicates that when the current
world is w, principal A believes it possible that the current worlds is w'.

 Example
Consider three young children (Flo, Gil, and Hal) who are being watched by an

overprotective babysitter. The babysitter will let them go outside to play only if the weather is
both sunny and warm. Imagine there are only three possible situations: it is sunny and warm, it is
sunny but cool, or it is not sunny. We represent these as a set of three worlds: 𝑊𝑊0 = {𝑒𝑒𝑠𝑠, 𝑒𝑒𝑠𝑠,𝑎𝑎𝑒𝑒}.
We use the propositional variable g t o represent the proposition “The children can go outside.”
The babysitter’s overprotectiveness can be represented by any interpretation function: 𝐼𝐼0:
PropVar → Ƥ({sw, sc, ns}) for which 𝐼𝐼0(𝑔𝑔) = {𝑒𝑒𝑠𝑠}. That is, the proposition g is true only in the
world sw.

The children are standing by the window trying to determine whether or not they will be
allowed to go outside. Gil is tall enough to see the outdoor thermometer and possesses perfect
knowledge of the situation. This corresponds to a possible-worlds relation 𝐽𝐽0(𝐺𝐺𝑒𝑒𝐽𝐽) =
{(𝑒𝑒𝑠𝑠, 𝑒𝑒𝑠𝑠), (𝑒𝑒𝑠𝑠, 𝑒𝑒𝑠𝑠), (𝑎𝑎𝑒𝑒,𝑎𝑎𝑒𝑒)}. Flo is too short to see the outdoor thermometer and cannot
determine between “sunny and warm” and “sunny and cool.” This corresponds to a possible-
worlds relation 𝐽𝐽0(𝐴𝐴𝐽𝐽𝐹𝐹) = {(𝑒𝑒𝑠𝑠, 𝑒𝑒𝑠𝑠), (𝑒𝑒𝑠𝑠, 𝑒𝑒𝑠𝑠), (𝑒𝑒𝑠𝑠, 𝑒𝑒𝑠𝑠), (𝑒𝑒𝑠𝑠, 𝑒𝑒𝑠𝑠), (𝑎𝑎𝑒𝑒,𝑎𝑎𝑒𝑒)}. That is,
𝐽𝐽0(𝐴𝐴𝐽𝐽𝐹𝐹)(𝑒𝑒𝑠𝑠) = {𝑒𝑒𝑠𝑠, 𝑒𝑒𝑠𝑠}. Hal is too young to understand that it can be simultaneously sunny and
cool. He believes that the presence of the sun automatically makes it warm outside. His confusion
corresponds to a possible-worlds relation 𝐽𝐽0(𝐻𝐻𝑎𝑎𝐽𝐽) = {(𝑒𝑒𝑠𝑠, 𝑒𝑒𝑠𝑠), (𝑒𝑒𝑠𝑠, 𝑒𝑒𝑠𝑠), (𝑎𝑎𝑒𝑒,𝑎𝑎𝑒𝑒)}. That is,
𝐽𝐽0(𝐻𝐻𝑎𝑎𝐽𝐽)(𝑒𝑒𝑠𝑠) = {𝑒𝑒𝑠𝑠}. The tuple 〈𝑊𝑊0, 𝐼𝐼0, 𝐽𝐽0〉 forms a Kripke structure.

 Exercise
In addition to the Kripke structure above, suppose that
𝐽𝐽0(Ida) = {(sw, sc), (sc, sw), (ns, sc), (ns, ns)}.
Calculate the following relations:

1. 𝐽𝐽0(Hal & Gil)
2. 𝐽𝐽0(Gil | Hal)
3. 𝐽𝐽0(Flo & Ida)
4. 𝐽𝐽0(Hal | Ida)
5. 𝐽𝐽0(Ida | Hal)
6. 𝐽𝐽0(Hal & (Ida | Hal))
7. 𝐽𝐽0(Hal | (Ida & Hal))

7. Access Control Logic

 Logical Rules
Each rule of logic has the following form:

𝐻𝐻1 … 𝐻𝐻𝑘𝑘
𝐶𝐶

where 𝐻𝐻𝐴𝐴 is a hypothesis and C is the conclusion or consequence. Informally, this is read
if each H above the line is true then we can conclude C below the line. It is possible to have no
hypothesis (i.e. k = 0). These cases are called axioms. Each rule states that, if all the premises of an
inference rule have already been written derived then the conclusion can also be derived. Axioms
can always be derived.

 The Taut Rule

A propositional-logic tautology is a formula that evaluates to true under all possible
interpretations of its propositional variables.

𝑇𝑇𝑎𝑎𝑠𝑠𝑡𝑡

𝜑𝜑

 if φ is an instance of a prop − logic tautology

This axiom states that any instance of a tautology from propositional logic can be
introduced at any time as a derivable statement in the access control logic.

For example, the formula
(Alice says go) ˅ ((sit ˄ read) ⊃ (Alice says go))
is an instance of the formula q ˅ (r ⊃ q) since it can be obtained by replacing every q by

(Alice says go) and every r by (sit ˄ read). In contrast, the formula
(Alice says go) ˅ ((sit ˄ read) ⊃ stay)
is not an instance of the formula q ˅ (r ⊃ q), because the two separate occurrences of q

were not replaced by the same formula.

 The Modus Ponens Rule

𝑀𝑀𝐹𝐹𝑎𝑎𝑠𝑠𝑒𝑒 𝑃𝑃𝐹𝐹𝑎𝑎𝑒𝑒𝑎𝑎𝑒𝑒
𝜑𝜑 𝜑𝜑 ⊃ 𝜑𝜑′

𝜑𝜑′

This rule states that if both the implication φ ⊃ φ' and the formula φ have been previously
introduced, then we can also introduce the formula φ'. For example, if we have previously derived
the two formulas

(𝐵𝐵𝑒𝑒𝐽𝐽𝐽𝐽 says 𝑒𝑒𝑒𝑒𝐽𝐽𝐽𝐽) ⊃ 𝑏𝑏𝑠𝑠𝑦𝑦 and 𝐵𝐵𝑒𝑒𝐽𝐽𝐽𝐽 says 𝑒𝑒𝑒𝑒𝐽𝐽𝐽𝐽
then we can use the Modus Ponens rule to derive buy.

 The Says Rule

𝑆𝑆𝑎𝑎𝑦𝑦𝑒𝑒
𝜑𝜑

𝑃𝑃 says 𝜑𝜑

This rule states that any principal can make any statement (or safely be assumed to have
made that statement) that has already been derived. For example, if we have previous derived
(read ˄ copy), then we can derive Cara says (read ˄ copy).

 The MP Says Rule

𝑀𝑀𝑃𝑃 𝑆𝑆𝑎𝑎𝑦𝑦𝑒𝑒

�𝑃𝑃 says (𝜑𝜑 ⊃ 𝜑𝜑′)� ⊃ (𝑃𝑃 says 𝜑𝜑 ⊃ 𝑃𝑃 says 𝜑𝜑′

This rule allows us to distribute the says operator over implications. For example, this
axiom allows us to derive the following formula:

(Graham says (sit ⊃ eat)) ⊃ ((Graham says sit) ⊃ (Graham says eat)).

 The Speaks For Rule

𝑆𝑆𝑝𝑝𝑒𝑒𝑎𝑎𝑆𝑆𝑒𝑒 𝐴𝐴𝐹𝐹𝑒𝑒

𝑃𝑃 ⇒ 𝑄𝑄 ⊃ (𝑃𝑃 says 𝜑𝜑 ⊃ 𝑄𝑄 says 𝜑𝜑)

This rule captures our intuition about the speaks-for relation. It states that if P speaks for
Q then any statements P makes should also be attributable to Q. For example, this axiom allows
us to derive the following statement:

Del ⇒ Ed ⊃ ((Del says buy) ⊃ (Ed says buy)).

 The & Says Rule

& 𝑆𝑆𝑎𝑎𝑦𝑦𝑒𝑒

(𝑃𝑃 & 𝑄𝑄 says φ) ≡ ((𝑃𝑃 says φ) ˄ (𝑄𝑄 says φ))

This rule reflects the conjunctive nature of a principal P & Q. The statements made by the
compound principal P & Q are precisely those statements that both P and Q are willing to make
individually. For example,

(Faith & Gail says sing) ≡ ((Faith says sing) ˄ (Gail says sing).

 The Quoting Rule

𝑄𝑄𝑠𝑠𝐹𝐹𝑡𝑡𝑒𝑒𝑎𝑎𝑔𝑔

(𝑃𝑃 |𝑄𝑄 says 𝜑𝜑) ≡ (𝑃𝑃 says 𝑄𝑄 says 𝜑𝜑)

This rule captures the underlying intuition behind the compound principal P | Q. The
statements made by P | Q are precisely those statements that P claims Q has made. For example,

(Iona | Jill says vote for Kory) ≡ (Iona says Jill says vote for Kory).

 Properties of ⇒

The Idempotency of ⇒ states that every principal speaks for itself.
𝐼𝐼𝑎𝑎𝑒𝑒𝐼𝐼𝑝𝑝𝐹𝐹𝑡𝑡𝑒𝑒𝑎𝑎𝑠𝑠𝑦𝑦 𝐹𝐹𝑜𝑜 ⇒

𝑃𝑃 ⇒ 𝑃𝑃

For example we can derive the following formula:
Wallace ⇒ Wallace.
The Transitivity of ⇒ supports reasoning about chains of principals that represent one

another.

𝑇𝑇𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑇𝑇𝑒𝑒𝑡𝑡𝑦𝑦 𝐹𝐹𝑜𝑜 ⇒
𝑃𝑃 ⇒ 𝑄𝑄 𝑄𝑄 ⇒ 𝑅𝑅

𝑃𝑃 ⇒ 𝑅𝑅

For example, if we have previously derived the following two formulas
Kanda ⇒ Theo and Theo ⇒ Vance
then the Transitivity of ⇒ rule allows us to derive
Kanda ⇒ Vance.
The Monotonicity of ⇒ rule states that quoting principals preserve the speaks-for

relationship.

𝑀𝑀𝐹𝐹𝑎𝑎𝐹𝐹𝑡𝑡𝐹𝐹𝑎𝑎𝑒𝑒𝑠𝑠𝑒𝑒𝑡𝑡𝑦𝑦 𝐹𝐹𝑜𝑜 ⇒
𝑃𝑃 ⇒ 𝑃𝑃′ 𝑄𝑄 ⇒ 𝑄𝑄′
𝑃𝑃 | 𝑄𝑄 ⇒ 𝑃𝑃′ | 𝑄𝑄′

For example, suppose we have already derived the following two formulas:
Lowell ⇒ Minnie Norma ⇒ Orson.
The Monotonicity of ⇒ rule allows us to derive the formula
Lowell | Norma ⇒ Minnie | Orson.

 The Controls Definition

𝑃𝑃 controls 𝜑𝜑 ≝ (𝑃𝑃 says 𝜑𝜑) ⊃ 𝜑𝜑
Controls does not give our logic any additional expressiveness, but it provides a useful

way to make more explicit what will turn out to be a common idiom.

 Example Formal Proofs
An example formal proof:
1. Al says (r ⊃ s) Assumption
2. r Assumption
3. (Al says (r ⊃ s)) ⊃ (Al says r ⊃ Al MP Says

says s)
4. Al says r ⊃ Al says s 1,3 Modus Ponens
5. Al says r 2 Says
6. Al says s 4,5 Modus Ponens

Formal Proof of the Controls rule:
1. P controls φ Assumption
2. P says φ Assumption
3. (P says φ) ⊃ φ 1 Definition controls
4. φ 2,3 Modus Ponens

 Useful Derived Rules

𝐶𝐶𝐹𝐹𝑎𝑎𝐶𝐶𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡𝑒𝑒𝐹𝐹𝑎𝑎
𝜑𝜑1 𝜑𝜑2
𝜑𝜑1˄𝜑𝜑2

𝑆𝑆𝑒𝑒𝐼𝐼𝑝𝑝𝐽𝐽𝑒𝑒𝑜𝑜𝑒𝑒𝑠𝑠𝑎𝑎𝑡𝑡𝑒𝑒𝐹𝐹𝑎𝑎 (1) 𝜑𝜑1 ˄ 𝜑𝜑2
𝜑𝜑1

 𝑆𝑆𝑒𝑒𝐼𝐼𝑝𝑝𝐽𝐽𝑒𝑒𝑜𝑜𝑒𝑒𝑠𝑠𝑎𝑎𝑡𝑡𝑒𝑒𝐹𝐹𝑎𝑎 (2) 𝜑𝜑1 ˄ 𝜑𝜑2
𝜑𝜑2

𝐷𝐷𝑒𝑒𝑒𝑒𝐶𝐶𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡𝑒𝑒𝐹𝐹𝑎𝑎 (1) 𝜑𝜑1
𝜑𝜑1 ˅ 𝜑𝜑2

 𝐷𝐷𝑒𝑒𝑒𝑒𝐶𝐶𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡𝑒𝑒𝐹𝐹𝑎𝑎 (2) 𝜑𝜑2
𝜑𝜑1 ˅ 𝜑𝜑2

𝑀𝑀𝐹𝐹𝑎𝑎𝑠𝑠𝑒𝑒 𝑇𝑇𝐹𝐹𝐽𝐽𝐽𝐽𝑒𝑒𝑎𝑎𝑒𝑒 𝜑𝜑1 ⊃ 𝜑𝜑2 ¬𝜑𝜑2
¬𝜑𝜑1

 𝐷𝐷𝐹𝐹𝑠𝑠𝑏𝑏𝐽𝐽𝑒𝑒 𝑎𝑎𝑒𝑒𝑔𝑔𝑎𝑎𝑡𝑡𝑒𝑒𝐹𝐹𝑎𝑎 ¬¬𝜑𝜑
𝜑𝜑

𝐷𝐷𝑒𝑒𝑒𝑒𝐶𝐶𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡𝑒𝑒𝑇𝑇𝑒𝑒 𝑆𝑆𝑦𝑦𝐽𝐽𝐽𝐽𝐹𝐹𝑔𝑔𝑒𝑒𝑒𝑒𝐼𝐼 𝜑𝜑1 ˅ 𝜑𝜑2 ¬𝜑𝜑1
𝜑𝜑2

 𝐻𝐻𝑦𝑦𝑝𝑝𝐹𝐹𝑡𝑡ℎ𝑒𝑒𝑡𝑡𝑒𝑒𝑠𝑠𝑎𝑎𝐽𝐽 𝑆𝑆𝑦𝑦𝐽𝐽𝐽𝐽𝐹𝐹𝑔𝑔𝑒𝑒𝑒𝑒𝐼𝐼 𝜑𝜑1 ⊃ 𝜑𝜑2 𝜑𝜑2 ⊃ 𝜑𝜑3
𝜑𝜑1 ⊃ 𝜑𝜑3

𝐶𝐶𝐹𝐹𝑎𝑎𝑡𝑡𝑒𝑒𝐹𝐹𝐽𝐽𝑒𝑒
𝑃𝑃 controls 𝜑𝜑 𝑃𝑃 says φ

𝜑𝜑

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝑒𝑒𝑎𝑎 𝑆𝑆𝑝𝑝𝑒𝑒𝑎𝑎𝑆𝑆𝑒𝑒 𝐴𝐴𝐹𝐹𝑒𝑒 𝑃𝑃 ⇒𝑄𝑄 𝑃𝑃 says 𝜑𝜑
𝑄𝑄 says 𝜑𝜑

 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝑒𝑒𝑎𝑎 𝐶𝐶𝐹𝐹𝑎𝑎𝑡𝑡𝑒𝑒𝐹𝐹𝐽𝐽𝑒𝑒 𝑃𝑃 ⇒𝑄𝑄 𝑄𝑄 controls φ
𝑃𝑃 controls φ

𝑆𝑆𝑎𝑎𝑦𝑦𝑒𝑒 𝑆𝑆𝑒𝑒𝐼𝐼𝑝𝑝𝐽𝐽𝑒𝑒𝑜𝑜𝑒𝑒𝑠𝑠𝑎𝑎𝑡𝑡𝑒𝑒𝐹𝐹𝑎𝑎 (1) 𝑃𝑃 says (φ1 ˄ φ2)
𝑃𝑃 says φ1

 𝑆𝑆𝑎𝑎𝑦𝑦𝑒𝑒 𝑆𝑆𝑒𝑒𝐼𝐼𝑝𝑝𝐽𝐽𝑒𝑒𝑜𝑜𝑒𝑒𝑠𝑠𝑎𝑎𝑡𝑡𝑒𝑒𝐹𝐹𝑎𝑎 (2) 𝑃𝑃 says (φ1 ˄ φ2)
𝑃𝑃 says φ2

 Exercises

 Give a formal proof for the Derived Speaks For rule.

 Give a formal proof for the Derived Controls rule.

 Give a formal proof for the Says Simplification rule.

	1. Introduction and Objectives
	2. Binary and Hexadecimal Number Systems
	2.1. Binary
	2.2. Binary to Decimal Conversion
	2.3. Hexadecimal
	2.4. Hexadecimal to Decimal
	2.5. Hexadecimal to Binary
	2.6. Windows Calculator
	2.7. Exercises

	3. Boolean Algebra: Truth Tables and Logic Operators
	4. Sets and Relations
	4.1. Definitions and Notation
	4.2. Examples and Exercises
	4.2.1. Example
	4.2.2. Exercises

	4.3. Approaches for Mathematical Proofs
	4.3.1. Properties
	4.3.2. Example Proof

	5. Syntax
	5.1. Principal Expressions
	5.2. Access Control Statements
	5.3. Well-Formed Formulas
	5.3.1. Backus-Naur Form (BNF)
	5.3.2. Examples

	5.4. Exercises

	6. Kripke Structures
	6.1. Definition
	6.2. Example
	6.3. Exercise

	7. Access Control Logic
	7.1. Logical Rules
	7.1.1. The Taut Rule
	7.1.2. The Modus Ponens Rule
	7.1.3. The Says Rule
	7.1.4. The MP Says Rule
	7.1.5. The Speaks For Rule
	7.1.6. The & Says Rule
	7.1.7. The Quoting Rule
	7.1.8. Properties of ⇒
	7.1.9. The Controls Definition

	7.2. Example Formal Proofs
	7.3. Useful Derived Rules
	7.4. Exercises
	7.4.1. Give a formal proof for the Derived Speaks For rule.
	7.4.2. Give a formal proof for the Derived Controls rule.
	7.4.3. Give a formal proof for the Says Simplification rule.

