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1. Introduction and Objectives 
This exercise covers the basics of the binary and hexadecimal number systems, as well as 

different methods for binary and hexadecimal conversion. In order to understand Access Control 
Logic, we introduce Boolean Logic, Set Theory, and Kripke Structures.  

The objectives of this exercise are to 
• Understand the binary and hexadecimal number systems and be able to convert between 

the two. 
• Understand Boolean Logic. 
• Be able to complete Set Theory proofs and relations. 
• Understand the basics of Access Control Logic. 

2. Binary and Hexadecimal Number Systems 
We are all familiar with counting in the decimal system. Although we may not realize it, 

counting in binary and hexadecimal works in the same manner, the difference being binary has 2 
unique symbols while hexadecimal has 16. The quantity of symbols in a numbering system 
corresponds to the base of the system. Binary (base two) counts in powers of 2, whereas 



hexadecimal (base sixteen) counts in powers of 16. This makes sense when we take into account 
that decimal (base 10) counts in powers of 10.  

 Binary 
The binary number system consists solely of 1s and 0s. Each binary digit is a bit. Each bit 

is a power of 2. The table below shows the values of the powers of 2 starting with the 0th bit and 
ending with the 7th bit.  
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We can represent the positive numbers 0–127 with this 8-bit table. Note: 128 cannot be 
represented because we begin counting at 0, not 1. Hence, the largest positive number we can 
represent given n bits is 2𝑛𝑛 − 1. 

 Binary to Decimal Conversion 
In order to convert a number from binary to decimal, we add the power of two that 

corresponds to the location of a 1 in the binary representation.  
For example, to convert the binary representation 1010 to decimal, for each 1, calculate 

the corresponding power of 2 and sum them. Ignore all 0's. The chart below breaks down each 
step of the conversion process. 

Binary 1 0 1 0 
Exponent 23 22 21 20 
Calculate

d 
8 4 2 1 

Action Add 8 Ignore Add 2 Ignore 
Decimal 10 
 
In the above table, we added 8 and 2 together because their bit location contain a 1. This 

results in the decimal number 10, which is indeed the number represented. The following table 
shows the binary values for the decimal numbers 0-10. 
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As a side note, a short cut to read shorter binary numbers is to read the sequence from left 

to right. The numbers are summed starting from 0. The first 1 is kept as the current sum. With 
each subsequent 0, double the previous sum. For each 1 double the previous sum and add 1. For 
example, given the binary string 01001, reading from left to right, the table below demonstrates 
how to calculate the correct decimal number of 9. The current digit at each step is bold and 
underlined in the following table: 
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 Hexadecimal 
The numbering system we grow up with only has ten unique symbols (0-9). Therefore, to 

represent hexadecimal numbers, we need additional symbols. We utilize the letters A through F 
to supply the additional six symbols. Therefore, hexadecimal numbers are represented with the 
symbols 0 through 9 and A through F where A through F represent the numbers 10 through 15 
respectively.  

 Hexadecimal to Decimal 
In order to convert hexadecimal to decimal, we add the quantity of the numeric value of 

the hexadecimal value times sixteen to the power of the hexadecimal location for hexadecimal 
numbers. For example, the following converts the hexadecimal value 2AF3 to decimal: 

Hexadecimal Equivalent 
Character 

Location Conversion 

2 2 3 (2 × 163) 
A 10 2 (10 ×  162) 
F 15 1 (15 × 161) 
3 3 0 (3 × 160) 
 

2𝐴𝐴𝐴𝐴3 = (2 × 163) +  (10 × 162) +  (15 ×  161) +  (3 × 160) =  10995 

 Hexadecimal to Binary 
Each hexadecimal value represents four binary values. Hexadecimal shortens binary 

notation as it is a more compact representation. The following chart shows the binary and 
hexadecimal equivalencies.  
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For example, to convert 1010010101110010 to hexadecimal, we break the binary 

representation down into groups of four: 
1010010101110010 = 1010  0101  0111  0010 
Using the chart above or by converting from binary to decimal as we just learned, we can 

replace each four bits with their hexadecimal representation: 
1010 0101 0111 0010 = A  5  7  2 = A572 
Using the same method, we can represent the hexadecimal number A4B7F in binary. 
A 4 B 7 F 
= 1010  0100  1011  0111  1111 
= 10100100101101111111 

 Windows Calculator 
A useful trick for converting between binary, decimal, and hexadecimal is present in the 

Windows Calculator. To open the calculator, click Start, type calculator in the search bar, and hit 
enter. Once the Windows Calculator is open, click View → Programmer.  



 
To convert a number from one system to another, first select your starting system (Hex, 

Dec, Oct, or Bin) by clicking on its radial button. Then, type the number you wish to convert 
from that system. Now, click the radial button for the system to which you want to convert the 
number. 

 Exercises 
Convert the following binary numbers into decimal: 

1. 10010000 
2. 00000001 
3. 01110010 
4. 00000100 
5. 00100100 

Convert the following decimal numbers into binary: 
1. 63 
2. 95 
3. 112 
4. 46 
5. 50 

Convert the following hexadecimal numbers into binary and decimal: 
1. F4B5C 
2. 2A 
3. 13C 
4. DAD 
5. 2C4E 



3. Boolean Algebra: Truth Tables and Logic Operators 
In Boolean Algebra, a 1 is true and a 0 is false.  
A truth table is used to compute the functional values of logical expressions. Negation (¬) 

produces a value of true if its operand is false and a value of false if the operand is true (NOT p). 
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Logical conjunction (˄) returns true if both values are true (p AND q are true).  
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Logical disjunction (˅) returns true if at least one operand is true (p OR q is true). 
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Exclusive disjunction (⊕) produces a value of true if ONLY one operand is true, not both 

(p XOR q).  
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Negation, conjunction, disjunction, and exclusive disjunction can be combined. Truth 

tables can be used to determine the value. The truth table below demonstrates the step by step 
method for calculating (p ˅ ¬q) ⊕(p ˄ q). 

(p ˅ ¬q) ⊕(p ˄ q) 

p q ¬q 
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(p ˄ q) 
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4. Sets and Relations 

 Definitions and Notation 
• A set is a collection of well-defined and distinct objects. Set elements are contained in 

brackets, as in {𝑥𝑥1, 𝑥𝑥2, . . .  𝑥𝑥𝑛𝑛}. Note: the order of elements in a set does not matter; 
therefore, {𝑥𝑥1, 𝑥𝑥2} is the same as {𝑥𝑥2, 𝑥𝑥1}. 

• The empty set is the set that has no elements. The empty set is denoted as { } or ∅. 
• The set union of two sets A and B is the collection of all elements in either A or B. The 

union of A and B is denoted A ∪ B.  
1. A = {blue, red} 
2. B = {blue, green} 
3. A ∪ B = {blue, red, green} 

• The set intersection of two sets A and B is the collection of all elements in A and B. The 
intersection of A and B is denoted A ∩ B.  

4. A = {blue, red} 
5. B = {blue, green} 
6. A ∩ B = {blue} 

• The set difference of two sets A and B is the collection of all elements in one that are not 
in the other. The set difference of A and B is denoted A - B. The collection of all elements 



in B that are not in A is denoted B - A. Set difference can also be denoted with \ instead of 
-. 

7. A = {blue, red} 
8. B = {blue, green} 
9. A - B = {red} 
10. B - A = {green} 

• To indicate that x is or is not an element of a set, S, we write x ∈ S to say that x is an 
element of S and we write x ∉ S to say that x is not an element of S. 

11. A = {blue, red} 
12. blue ∈ A 
13. green ∉ A 

• A set, S, is a subset of another set, T, if every element of S is also an element of T. It may 
be helpful to think of the subset symbol, ⊆, as a “c” for “is contained within.” Note: the 
empty set is a subset of every set and every set is a subset of itself. 

14. S = {1, 2, 4} 
15. T = {1, 2, 4, 7, 10} 
16. S ⊆ T 
17. T ⊆ T 
18. ∅ ⊆ T 

• The power set of a set, S, is the set of all subsets of S. The power set is denoted Ƥ(S). 
19. S = {1, 2, 4} 
20. Ƥ(S) = { { }, {1}, {2}, {4}, {1, 2}, {1,4}, {2, 4}, {1, 2, 4} } 

• The Cartesian product  of sets A and B is the set of ordered pairs whose first component is 
drawn from A and whose second component is drawn from B. Cartesian products are 
denoted A × B. Note: in set notation, the pipe, “|,” reads “such that” or “given that.” 

21. 𝐴𝐴 × 𝐵𝐵 = {(𝑎𝑎, 𝑏𝑏) |𝑎𝑎 𝜖𝜖 𝐴𝐴, 𝑏𝑏 𝜖𝜖 𝐵𝐵} 
22. A = {1, 3, 5} 
23. B = {2, 4, 6} 
24. 𝐴𝐴 × 𝐵𝐵 = {(1, 2), (1, 4), (1, 6), (3, 2), (3, 4), (3,6), (5, 2), (5,4), (5,6)} 

• A binary relation is a set 𝑅𝑅 ⊆ 𝐴𝐴 × 𝐵𝐵 of pairs whose first components are drawn from A 
and whose second components are drawn from B. R is a binary relation over (or on) A 
when 𝑅𝑅 ⊆ 𝐴𝐴 × 𝐴𝐴.  

• The composition of relations 𝑅𝑅1  ⊆ 𝐴𝐴 × 𝐵𝐵 and 𝑅𝑅2  ⊆ 𝐵𝐵 × 𝐶𝐶 is the relation 𝑅𝑅1° 𝑅𝑅2  ⊆
𝐴𝐴 × 𝐶𝐶 as defined as follows: 

25. 𝑅𝑅1  ∘  𝑅𝑅2 = {(𝑥𝑥, 𝑧𝑧)|𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑥𝑥𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒 𝑦𝑦 𝑒𝑒𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 ((𝑥𝑥,𝑦𝑦) ∈ 𝑅𝑅1𝑎𝑎𝑎𝑎𝑎𝑎 (𝑦𝑦, 𝑧𝑧) ∈  𝑅𝑅2)} 
• The image of R under a where R is the relation 𝑅𝑅 ⊆ 𝐴𝐴 × 𝐵𝐵 and 𝑎𝑎 ∈ 𝐴𝐴 is the set of 

elements in B related to 𝑎𝑎 by the relation R.  
26. 𝑅𝑅(𝑎𝑎) = {𝑏𝑏 ∈ 𝐵𝐵 | (𝑎𝑎, 𝑏𝑏) ∈ 𝑅𝑅} 
27. 𝑅𝑅 = {(1,2), (2,3), (2,4), (3,5), (3,1), (4,1), (5,2)} 
28. 𝑅𝑅(2) = {3, 4} 



29. 𝑅𝑅(3) = {5, 1} 

 Examples and Exercises 

 Example 

1. Let A = {1, 2, 3, 4, 5} and B = {0, 3, 6}. 
a. A ∪ B = {0, 1, 2, 3, 4, 5, 6} 
b. A ∩ B = {3} 
c. A - B = {1, 2, 4, 5} 
d. B - A = {0, 6} 

2. Let A = {1, 2} and B = {a, b, c}. 
a. A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)} 
b. B × A = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)} 

 Exercises 

1. Let A = {a, b, c, d, e} and B = {a, b, c, d, e, f, g, h}. Find 
a. A ∪ B 
b. A ∩ B 
c. A - B 
d. B - A  

2. Let T and U be relations over the set A = {1, 2, 3, 4}, as follows: 𝑇𝑇 =
{(1, 1), (2, 1), (3, 3), (4, 4), (3, 4)} and 𝑈𝑈 = {(2, 4), (1, 3), (3, 3), (3, 2)}. 

a. Ƥ({x, y, z}) 
b. U(3) 
c. U(4) 
d. T ∪ U 
e. T ∩ U 
f. T - U 
g. U ∘ T 
h. T ∘ U 

3. Let A = {a, b, c}, B = {x ,y}, and C = {0 ,1}. Find 
a. A × B × C 
b. C × B × A 
c. C × A × B 
d. B × B × B 



 Approaches for Mathematical Proofs 

 Properties 

• Transitivity: If A is a set such that x ∈ A and y ∈ x then y ∈ A. For example, an apple is a 
type of edible fruit. Edible fruits are food. Therefore, an apple is food.  

• Equivalence: Two sets are equal provided that each is a subset of the other. That is, if A 
and B are sets and A ⊆ B and B ⊆ A then A = B. Colloquially, A has the exact same 
elements as B. 

 Example Proof 

Prove the following: 
If A, B, and C are sets then A ∩ (B ∩ C) = (A ∩ B) ∩ C.  
Since we are claiming the equivalence of two sets, we must show that each set is a subset 

of the other. This gives us two steps: ① shows A ∩ (B ∩ C) ⊆ (A ∩ B) ∩ C, and ② shows (A ∩ 
B) ∩ C ⊆ A ∩ (B ∩ C). As stated in Section 4.1, a set is a subset of another if every element in the 
smaller set is in the larger set. To show that A ∩ (B ∩ C) ⊆ (A ∩ B) ∩ C, choose an arbitrary 
element x ∈ A ∩ (B ∩ C) and show that x ∈ (A ∩ B) ∩ C. 

① Show 𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶) ⊆ (𝐴𝐴 ∩ 𝐵𝐵) ∩ 𝐶𝐶. 
 Let 𝑥𝑥 ∈ 𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶). Show 𝑥𝑥 ∈ (𝐴𝐴 ∩ 𝐵𝐵) ∩ 𝐶𝐶. 
⇒ 𝑥𝑥 ∈ 𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶) 
⇒ 𝑥𝑥 ∈ 𝐴𝐴 and 𝑥𝑥 ∈ (𝐵𝐵 ∩ 𝐶𝐶) by the definition of set intersection 
⇒𝑥𝑥 ∈ 𝐴𝐴 and 𝑥𝑥 ∈ 𝐵𝐵 and 𝑥𝑥 ∈ 𝐶𝐶 by the definition of set intersection 
⇒𝑥𝑥 ∈ 𝐴𝐴 ∩ 𝐵𝐵 and 𝑥𝑥 ∈ 𝐶𝐶  
⇒ 𝑥𝑥 ∈ (𝐴𝐴 ∩ 𝐵𝐵) and 𝑥𝑥 ∈ 𝐶𝐶 
⇒ 𝑥𝑥 ∈ (𝐴𝐴 ∩ 𝐵𝐵) ∩ 𝐶𝐶 
By showing that any arbitrary x in 𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶) is also in (𝐴𝐴 ∩ 𝐵𝐵) ∩ 𝐶𝐶, we have shown 

that 𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶) ⊆ (𝐴𝐴 ∩ 𝐵𝐵) ∩ 𝐶𝐶.  
② Show (𝐴𝐴 ∩ 𝐵𝐵) ∩ 𝐶𝐶 ⊆ 𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶).  
Let 𝑥𝑥 ∈ (𝐴𝐴 ∩ 𝐵𝐵) ∩ 𝐶𝐶. Show 𝑥𝑥 ∈ 𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶). 
⇒ 𝑥𝑥 ∈ (𝐴𝐴 ∩ 𝐵𝐵) ∩ 𝐶𝐶 
⇒𝑥𝑥 ∈ (𝐴𝐴 ∩ 𝐵𝐵) and 𝑥𝑥 ∈ 𝐶𝐶 by the definition of set intersection 
⇒𝑥𝑥 ∈ 𝐴𝐴 and 𝑥𝑥 ∈ 𝐵𝐵 and 𝑥𝑥 ∈ 𝐶𝐶 by the definition of set intersection 
⇒ 𝑥𝑥 ∈ 𝐴𝐴 and 𝑥𝑥 ∈ 𝐵𝐵 ∩ 𝐶𝐶 
⇒ 𝑥𝑥 ∈ 𝐴𝐴 and 𝑥𝑥 ∈ (𝐵𝐵 ∩ 𝐶𝐶) 
⇒ 𝑥𝑥 ∈ 𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶) 
By showing that any arbitrary x in (𝐴𝐴 ∩ 𝐵𝐵) ∩ 𝐶𝐶 is also in 𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶), we have shown 

that (𝐴𝐴 ∩ 𝐵𝐵) ∩ 𝐶𝐶 ⊆ 𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶).  
Since each set is a subset of the other, we can conclude that 𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶) = (𝐴𝐴 ∩ 𝐵𝐵) ∩

𝐶𝐶. 



5. Syntax 

 Principal Expressions 
Principals are the major actors in a system. The class of principals includes (but is not 

limited to) people, processes, cryptographic keys, personal identification numbers (PINs), 
userID-password pairs, and so on. The following are all allowable principal names: Alice, Bob, the 
key 𝐾𝐾𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, the PIN 1234, and the userID-password pair 〈Alice, bAdPsWd!〉.  

Compound principals connote a combination of principals. For example, “the President 
in conjunction with Congress” connotes a principal comprising of both the president and 
Congress. Also, “the reporter quoting her source” connotes a principal that comprises both the 
reporter and her source.  

A principal expression is a name, an expression of the form P & Q or an expression of the 
form P | Q. The principal expression P & Q denotes the principal “P in conjunction with Q.” The 
principal expression P | Q denotes the principal “P quoting Q.” Parentheses can be added to 
disambiguate compound principal expressions. For example, (Sal & Ted) | Uly denotes the 
conjunctive principal Sal & Ted quoting the principal Uly. In contrast, Sal & (Ted | Uly) denotes 
the principal Sal in conjunction with the principal Ted quoting the principal Uly. The standard 
convention in such expressions is that & binds more tightly than |, so Sal & Ted | Uly is 
equivalent to (Sal & Ted) |Uly. 

 

 Access Control Statements 
We must determine with precision and accuracy which access requests from which 

principals should be granted and which should be denied. We need to be able to express our 
assumptions and our expectations as to which authorities we trust, which principals should be 
granted access to which objects, and so on. We represent basic requests such as “read file foo” or 
“modify file bar” by propositional variables. We need some way of accounting for the source of 
the request. In our logic, we can associate requests with their source by statements of the form  

P says φ 

where P is the principal and φ is a specific statement. For example, if rff is a propositional 
variable representing the request “read file foo,” then we can represent Deena’s request to read 
file foo by the statement  

Deena says rff. 

The says operator can also ascribe non-request statements to particular principals. For 
example, we may wish to express that Rob believes that Deena is making a request to read file foo. 
We can express this by the statement 

Rob says (Deena says rff). 



Access policies specify which principals are authorized to access particular objects. Such 
authorizations can be expressed in our logic by statements of the form 

P controls φ. 

where P is the principal and φ is a specific statement. For example, we can express Deena’s 
entitlement to read the file foo as the statement 

Deena controls rff. 

Like authorizations, jurisdiction is represented by statements of the form  

P controls φ 

where P is a principal with jurisdiction over the statement φ. 
In order to make statements about the relative trust level of different principals, we use 

the operator  ⇒ (pronounced “speaks for”). The statement  

P ⇒ Q 

describes a proxy relationship between the two principals P and Q such that any statement made 
by P can also be safely attributed to Q. 

We also make use of the standard logical operators: negation (¬φ), conjunction (𝜑𝜑1˄𝜑𝜑2), 
disjunction (𝜑𝜑1˅𝜑𝜑2), implication (𝜑𝜑1 ⊃ 𝜑𝜑2), and equivalence (𝜑𝜑1 ≡ 𝜑𝜑2). According to standard 
conventions, ¬ binds the most tightly, followed in order by ˄, ˅, ⊃ and ≡. 

 Well-Formed Formulas 
Principal names and propositional variables will be distinguished by capitalization. 

Specifically, we use capitalized identifiers such as Josh and Reader for simple principal names. We 
use lowercase identifiers such as r, write, and rff for propositional variables. 

 Backus-Naur Form (BNF) 

Backus-Naur Form is a notation used to describe context-free grammars. Those of you 
familiar with compilation, programming, or protocols are already familiar with context-free 
grammars, even if you do not realize it. 

The set Form of all well-formed expressions in our language is given by the following 
BNF specification: 

Form ::= PropVar / ¬Form / (Form ˅ Form) / (Form ˄ Form) / (Form ⊃Form) / 
(Form ≡ Form) / (Princ ⇒Princ) / (Princ says Form) / (Princ controls Form) 

We define a nonterminal statement as a sequence of terminal or nonterminal statements. 
The above BNF specification provides all the information necessary to determine the structure of 
well-formed formulas in access control logic.  



 Examples 

The following are well-formed formulas: 
• r 
• ((¬q ˄ r) ⊃ s) 
• (Jill says (r ⊃ (p ˅ q))) 

The following syntactic derivation demonstrates that (𝐽𝐽𝑒𝑒𝐽𝐽𝐽𝐽 𝑒𝑒𝑎𝑎𝑦𝑦𝑒𝑒 �𝑒𝑒 ⊃ (𝑝𝑝 ˅ 𝑞𝑞)�) is a well-
formed formula: 

Form ⇝ (Princ says Form) 
 ⇝ (PName says Form) 
 ⇝ (Jill says Form) 
 ⇝ (Jill says (Form ⊃ Form) 
 ⇝ (Jill says (PropVar ⊃ Form) 
 ⇝ (Jill says (r ⊃ Form) 
 ⇝ (Jill says (r ⊃ (Form ˅ Form))) 
 ⇝ (Jill says (r ⊃ (PropVar ˅ Form))) 
 ⇝ (Jill says (r ⊃ (p ˅ Form))) 
 ⇝ (Jill says (r ⊃ (p ˅ PropVar))) 
 ⇝ (Jill says (r ⊃ (p ˅ q)))   
The following examples are not well-formed formulas, for the reasons stated: 

• Orly & Mitch is a principal expression but not an access-control formula. 
• ¬Orly, because Orly is a principal expression but not an access-control formula. The 

negation operator ¬ must precede an access-control formula. 
• (Orly ⇒ (p ˄ q)) because (p ˄ q) is not a principal expression. The “speaks for” operator 

⇒ must appear between two principal expressions. 
• (Orly controls Mitch) because Mitch is a principal expression, not an access-control 

formula. The controls operator requires its second argument to be an access-control 
formula.  

 Exercises 
1. Which of the following are well-formed formulas in the access-control logic? Support 

your answers by appealing to the BNF specification. 
a. ((p ˄ ¬q) ⊃ (Cal controls r)) 
b. ((Gin ⇒ r) ˄ q) 
c. (Mel | Ned says (r ⊃ t)) 
d. (¬t ⇒ Sal) 
e. (Ulf controls (Vic | Wes ⇒ Tori)) 
f. (Pat controls (Quint controls (Ryne says s))) 

2. Fully parenthesize each of the following formulas: 
a. p ⊃ ¬q ˅ r ⊃ s 



b. ¬p ⊃ r ≡ q ˅ r ⊃ t 
c. X controls t ˅ s ⊃ Y says q ⊃ r 
d. Cy controls q ˄ Di controls p ⊃ r  
e. Ike ⇒ Jan ˄ Kai & Lee controls q ˄ r 

6. Kripke Structures 

 Definition 
A Kripke structure, M is a three-tuple 〈W, I, J〉, where: 

• W is a nonempty set, whose elements are called worlds 
• I: PropVar →Ƥ(W) is an interpretation function that maps each propositional variable to 

a set of worlds  
• J: PName→Ƥ(W ×W) is a function that maps each principal name to a relation on worlds 

(i.e. a subset of W × W). 
The concept of worlds is abstract. In reality, W is simply a set. The functions I and J 

provide meanings for our propositional variables and simple principals. I(p) is the set of worlds 
in which we consider p to be true. J(A) is a relation that describes how the simple principal A 
views the relationships between worlds. Each pair (w, w') ∈ J(A) indicates that when the current 
world is w, principal A believes it possible that the current worlds is w'. 

 Example 
Consider three young children (Flo, Gil, and Hal) who are being watched by an 

overprotective babysitter. The babysitter will let them go outside to play only if the weather is 
both sunny and warm. Imagine there are only three possible situations: it is sunny and warm, it is 
sunny but cool, or it is not sunny. We represent these as a set of three worlds: 𝑊𝑊0 = {𝑒𝑒𝑠𝑠, 𝑒𝑒𝑠𝑠,𝑎𝑎𝑒𝑒}. 
We use the propositional variable g t o represent the proposition “The children can go outside.” 
The babysitter’s overprotectiveness can be represented by any interpretation function: 𝐼𝐼0: 
PropVar → Ƥ({sw, sc, ns}) for which 𝐼𝐼0(𝑔𝑔) = {𝑒𝑒𝑠𝑠}. That is, the proposition g is true only in the 
world sw.  

The children are standing by the window trying to determine whether or not they will be 
allowed to go outside. Gil is tall enough to see the outdoor thermometer and possesses perfect 
knowledge of the situation. This corresponds to a possible-worlds relation 𝐽𝐽0(𝐺𝐺𝑒𝑒𝐽𝐽) =
{(𝑒𝑒𝑠𝑠, 𝑒𝑒𝑠𝑠), (𝑒𝑒𝑠𝑠, 𝑒𝑒𝑠𝑠), (𝑎𝑎𝑒𝑒,𝑎𝑎𝑒𝑒)}. Flo is too short to see the outdoor thermometer and cannot 
determine between “sunny and warm” and “sunny and cool.” This corresponds to a possible-
worlds relation 𝐽𝐽0(𝐴𝐴𝐽𝐽𝐹𝐹) = {(𝑒𝑒𝑠𝑠, 𝑒𝑒𝑠𝑠), (𝑒𝑒𝑠𝑠, 𝑒𝑒𝑠𝑠), (𝑒𝑒𝑠𝑠, 𝑒𝑒𝑠𝑠), (𝑒𝑒𝑠𝑠, 𝑒𝑒𝑠𝑠), (𝑎𝑎𝑒𝑒,𝑎𝑎𝑒𝑒)}. That is, 
𝐽𝐽0(𝐴𝐴𝐽𝐽𝐹𝐹)(𝑒𝑒𝑠𝑠) = {𝑒𝑒𝑠𝑠, 𝑒𝑒𝑠𝑠}. Hal is too young to understand that it can be simultaneously sunny and 
cool. He believes that the presence of the sun automatically makes it warm outside. His confusion 
corresponds to a possible-worlds relation 𝐽𝐽0(𝐻𝐻𝑎𝑎𝐽𝐽) = {(𝑒𝑒𝑠𝑠, 𝑒𝑒𝑠𝑠), (𝑒𝑒𝑠𝑠, 𝑒𝑒𝑠𝑠), (𝑎𝑎𝑒𝑒,𝑎𝑎𝑒𝑒)}. That is, 
𝐽𝐽0(𝐻𝐻𝑎𝑎𝐽𝐽)(𝑒𝑒𝑠𝑠) = {𝑒𝑒𝑠𝑠}. The tuple 〈𝑊𝑊0, 𝐼𝐼0, 𝐽𝐽0〉 forms a Kripke structure.  



 Exercise 
In addition to the Kripke structure above, suppose that  
𝐽𝐽0(Ida) = {(sw, sc), (sc, sw), (ns, sc), (ns, ns)}. 
Calculate the following relations: 

1. 𝐽𝐽0(Hal & Gil) 
2. 𝐽𝐽0(Gil | Hal) 
3. 𝐽𝐽0(Flo & Ida) 
4. 𝐽𝐽0(Hal | Ida) 
5. 𝐽𝐽0(Ida | Hal) 
6. 𝐽𝐽0(Hal & (Ida | Hal)) 
7. 𝐽𝐽0(Hal | (Ida & Hal)) 

7. Access Control Logic 

 Logical Rules 
Each rule of logic has the following form: 

𝐻𝐻1 … 𝐻𝐻𝑘𝑘
𝐶𝐶

 

where 𝐻𝐻𝐴𝐴 is a hypothesis and C is the conclusion or consequence. Informally, this is read 
if each H above the line is true then we can conclude C below the line. It is possible to have no 
hypothesis (i.e. k = 0). These cases are called axioms. Each rule states that, if all the premises of an 
inference rule have already been written derived then the conclusion can also be derived. Axioms 
can always be derived. 

 The Taut Rule 

A propositional-logic tautology is a formula that evaluates to true under all possible 
interpretations of its propositional variables.  

𝑇𝑇𝑎𝑎𝑠𝑠𝑡𝑡 
          
𝜑𝜑

 if φ is an instance of a prop − logic tautology 

This axiom states that any instance of a tautology from propositional logic can be 
introduced at any time as a derivable statement in the access control logic.  

For example, the formula 
(Alice says go) ˅ ((sit ˄ read) ⊃ (Alice says go)) 
is an instance of the formula q ˅ (r ⊃ q) since it can be obtained by replacing every q by 

(Alice says go) and every r by (sit ˄ read). In contrast, the formula 
(Alice says go) ˅ ((sit ˄ read) ⊃ stay) 
is not an instance of the formula q ˅ (r ⊃ q), because the two separate occurrences of q 

were not replaced by the same formula.  



 The Modus Ponens Rule 

𝑀𝑀𝐹𝐹𝑎𝑎𝑠𝑠𝑒𝑒 𝑃𝑃𝐹𝐹𝑎𝑎𝑒𝑒𝑎𝑎𝑒𝑒 
𝜑𝜑          𝜑𝜑 ⊃ 𝜑𝜑′

𝜑𝜑′  

This rule states that if both the implication φ ⊃ φ' and the formula φ have been previously 
introduced, then we can also introduce the formula φ'. For example, if we have previously derived 
the two formulas 

(𝐵𝐵𝑒𝑒𝐽𝐽𝐽𝐽 says 𝑒𝑒𝑒𝑒𝐽𝐽𝐽𝐽) ⊃ 𝑏𝑏𝑠𝑠𝑦𝑦 and 𝐵𝐵𝑒𝑒𝐽𝐽𝐽𝐽 says 𝑒𝑒𝑒𝑒𝐽𝐽𝐽𝐽 
then we can use the Modus Ponens rule to derive buy. 

 The Says Rule 

𝑆𝑆𝑎𝑎𝑦𝑦𝑒𝑒 
𝜑𝜑

𝑃𝑃 says 𝜑𝜑
 

This rule states that any principal can make any statement (or safely be assumed to have 
made that statement) that has already been derived. For example, if we have previous derived 
(read ˄ copy), then we can derive Cara says (read ˄ copy). 

 The MP Says Rule 

𝑀𝑀𝑃𝑃 𝑆𝑆𝑎𝑎𝑦𝑦𝑒𝑒 
      

�𝑃𝑃 says (𝜑𝜑 ⊃ 𝜑𝜑′)� ⊃ (𝑃𝑃 says 𝜑𝜑 ⊃ 𝑃𝑃 says 𝜑𝜑′
 

This rule allows us to distribute the says operator over implications. For example, this 
axiom allows us to derive the following formula: 

(Graham says (sit ⊃ eat)) ⊃ ((Graham says sit) ⊃ (Graham says eat)). 

 The Speaks For Rule 

𝑆𝑆𝑝𝑝𝑒𝑒𝑎𝑎𝑆𝑆𝑒𝑒 𝐴𝐴𝐹𝐹𝑒𝑒 
 

𝑃𝑃 ⇒ 𝑄𝑄 ⊃ (𝑃𝑃 says 𝜑𝜑 ⊃ 𝑄𝑄 says 𝜑𝜑)
 

This rule captures our intuition about the speaks-for relation. It states that if P speaks for 
Q then any statements P makes should also be attributable to Q. For example, this axiom allows 
us to derive the following statement: 

Del ⇒ Ed ⊃ ((Del says buy) ⊃ (Ed says buy)). 

 The & Says Rule 

& 𝑆𝑆𝑎𝑎𝑦𝑦𝑒𝑒 
 

(𝑃𝑃 & 𝑄𝑄 says φ) ≡ ((𝑃𝑃 says φ) ˄ (𝑄𝑄 says φ))
 

This rule reflects the conjunctive nature of a principal P & Q. The statements made by the 
compound principal P & Q are precisely those statements that both P and Q are willing to make 
individually. For example, 

(Faith  & Gail says sing) ≡ ((Faith says sing) ˄ (Gail says sing). 



 The Quoting Rule 

𝑄𝑄𝑠𝑠𝐹𝐹𝑡𝑡𝑒𝑒𝑎𝑎𝑔𝑔 
 

(𝑃𝑃 |𝑄𝑄 says 𝜑𝜑)  ≡ (𝑃𝑃 says 𝑄𝑄 says 𝜑𝜑)
 

This rule captures the underlying intuition behind the compound principal P | Q. The 
statements made by P | Q are precisely those statements that P claims Q has made. For example, 

(Iona | Jill  says vote for Kory) ≡ (Iona says Jill says vote for Kory). 

 Properties of ⇒ 

The Idempotency of ⇒ states that every principal speaks for itself. 
𝐼𝐼𝑎𝑎𝑒𝑒𝐼𝐼𝑝𝑝𝐹𝐹𝑡𝑡𝑒𝑒𝑎𝑎𝑠𝑠𝑦𝑦 𝐹𝐹𝑜𝑜 ⇒  

 
𝑃𝑃 ⇒ 𝑃𝑃

 

For example we can derive the following formula: 
Wallace ⇒ Wallace. 
The Transitivity of ⇒ supports reasoning about chains of principals that represent one 

another. 

𝑇𝑇𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑇𝑇𝑒𝑒𝑡𝑡𝑦𝑦 𝐹𝐹𝑜𝑜 ⇒  
𝑃𝑃 ⇒ 𝑄𝑄     𝑄𝑄 ⇒ 𝑅𝑅

𝑃𝑃 ⇒ 𝑅𝑅
 

For example, if we have previously derived the following two formulas 
Kanda ⇒ Theo and Theo ⇒ Vance 
then the Transitivity of ⇒ rule allows us to derive 
Kanda ⇒ Vance. 
The Monotonicity of ⇒ rule states that quoting principals preserve the speaks-for 

relationship. 

𝑀𝑀𝐹𝐹𝑎𝑎𝐹𝐹𝑡𝑡𝐹𝐹𝑎𝑎𝑒𝑒𝑠𝑠𝑒𝑒𝑡𝑡𝑦𝑦 𝐹𝐹𝑜𝑜 ⇒  
𝑃𝑃 ⇒ 𝑃𝑃′    𝑄𝑄 ⇒ 𝑄𝑄′
𝑃𝑃 | 𝑄𝑄 ⇒ 𝑃𝑃′ | 𝑄𝑄′

 

For example, suppose we have already derived the following two formulas: 
Lowell ⇒ Minnie Norma ⇒ Orson. 
The Monotonicity of ⇒ rule allows us to derive the formula 
Lowell | Norma ⇒ Minnie | Orson. 

 The Controls Definition 

𝑃𝑃 controls 𝜑𝜑 ≝ (𝑃𝑃 says 𝜑𝜑) ⊃ 𝜑𝜑 
Controls does not give our logic any additional expressiveness, but it provides a useful 

way to make more explicit what will turn out to be a common idiom.  

 Example Formal Proofs 
An example formal proof: 
1. Al says (r ⊃ s) Assumption 
2. r Assumption 
3. (Al says (r ⊃ s)) ⊃ (Al says r ⊃ Al MP Says 



says s) 
4. Al says r ⊃ Al says s 1,3 Modus Ponens 
5. Al says r 2 Says 
6. Al says s 4,5 Modus Ponens 
 
 
Formal Proof of the Controls rule: 
1. P controls φ Assumption 
2. P says φ Assumption 
3. (P says φ) ⊃ φ 1 Definition controls 
4. φ 2,3 Modus Ponens  

 Useful Derived Rules 

𝐶𝐶𝐹𝐹𝑎𝑎𝐶𝐶𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡𝑒𝑒𝐹𝐹𝑎𝑎 
𝜑𝜑1     𝜑𝜑2
𝜑𝜑1˄𝜑𝜑2

 

𝑆𝑆𝑒𝑒𝐼𝐼𝑝𝑝𝐽𝐽𝑒𝑒𝑜𝑜𝑒𝑒𝑠𝑠𝑎𝑎𝑡𝑡𝑒𝑒𝐹𝐹𝑎𝑎 (1) 𝜑𝜑1 ˄ 𝜑𝜑2
𝜑𝜑1

  𝑆𝑆𝑒𝑒𝐼𝐼𝑝𝑝𝐽𝐽𝑒𝑒𝑜𝑜𝑒𝑒𝑠𝑠𝑎𝑎𝑡𝑡𝑒𝑒𝐹𝐹𝑎𝑎 (2) 𝜑𝜑1 ˄ 𝜑𝜑2
𝜑𝜑2

 

𝐷𝐷𝑒𝑒𝑒𝑒𝐶𝐶𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡𝑒𝑒𝐹𝐹𝑎𝑎 (1) 𝜑𝜑1
𝜑𝜑1 ˅ 𝜑𝜑2

  𝐷𝐷𝑒𝑒𝑒𝑒𝐶𝐶𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡𝑒𝑒𝐹𝐹𝑎𝑎 (2) 𝜑𝜑2
𝜑𝜑1 ˅ 𝜑𝜑2

 

𝑀𝑀𝐹𝐹𝑎𝑎𝑠𝑠𝑒𝑒 𝑇𝑇𝐹𝐹𝐽𝐽𝐽𝐽𝑒𝑒𝑎𝑎𝑒𝑒 𝜑𝜑1 ⊃ 𝜑𝜑2     ¬𝜑𝜑2
¬𝜑𝜑1

  𝐷𝐷𝐹𝐹𝑠𝑠𝑏𝑏𝐽𝐽𝑒𝑒 𝑎𝑎𝑒𝑒𝑔𝑔𝑎𝑎𝑡𝑡𝑒𝑒𝐹𝐹𝑎𝑎 ¬¬𝜑𝜑
𝜑𝜑

 

𝐷𝐷𝑒𝑒𝑒𝑒𝐶𝐶𝑠𝑠𝑎𝑎𝑠𝑠𝑡𝑡𝑒𝑒𝑇𝑇𝑒𝑒 𝑆𝑆𝑦𝑦𝐽𝐽𝐽𝐽𝐹𝐹𝑔𝑔𝑒𝑒𝑒𝑒𝐼𝐼 𝜑𝜑1 ˅ 𝜑𝜑2     ¬𝜑𝜑1
𝜑𝜑2

 𝐻𝐻𝑦𝑦𝑝𝑝𝐹𝐹𝑡𝑡ℎ𝑒𝑒𝑡𝑡𝑒𝑒𝑠𝑠𝑎𝑎𝐽𝐽 𝑆𝑆𝑦𝑦𝐽𝐽𝐽𝐽𝐹𝐹𝑔𝑔𝑒𝑒𝑒𝑒𝐼𝐼 𝜑𝜑1 ⊃ 𝜑𝜑2     𝜑𝜑2 ⊃ 𝜑𝜑3
𝜑𝜑1 ⊃ 𝜑𝜑3

 

𝐶𝐶𝐹𝐹𝑎𝑎𝑡𝑡𝑒𝑒𝐹𝐹𝐽𝐽𝑒𝑒 
𝑃𝑃 controls 𝜑𝜑     𝑃𝑃 says φ

𝜑𝜑
 

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝑒𝑒𝑎𝑎 𝑆𝑆𝑝𝑝𝑒𝑒𝑎𝑎𝑆𝑆𝑒𝑒 𝐴𝐴𝐹𝐹𝑒𝑒 𝑃𝑃 ⇒𝑄𝑄     𝑃𝑃 says 𝜑𝜑
𝑄𝑄 says 𝜑𝜑

  𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝑒𝑒𝑎𝑎 𝐶𝐶𝐹𝐹𝑎𝑎𝑡𝑡𝑒𝑒𝐹𝐹𝐽𝐽𝑒𝑒 𝑃𝑃 ⇒𝑄𝑄     𝑄𝑄 controls φ
𝑃𝑃 controls φ

 

𝑆𝑆𝑎𝑎𝑦𝑦𝑒𝑒 𝑆𝑆𝑒𝑒𝐼𝐼𝑝𝑝𝐽𝐽𝑒𝑒𝑜𝑜𝑒𝑒𝑠𝑠𝑎𝑎𝑡𝑡𝑒𝑒𝐹𝐹𝑎𝑎 (1) 𝑃𝑃 says (φ1 ˄ φ2)
𝑃𝑃 says φ1

 𝑆𝑆𝑎𝑎𝑦𝑦𝑒𝑒 𝑆𝑆𝑒𝑒𝐼𝐼𝑝𝑝𝐽𝐽𝑒𝑒𝑜𝑜𝑒𝑒𝑠𝑠𝑎𝑎𝑡𝑡𝑒𝑒𝐹𝐹𝑎𝑎 (2) 𝑃𝑃 says (φ1 ˄ φ2)
𝑃𝑃 says φ2

 

 Exercises 

 Give a formal proof for the Derived Speaks For rule. 
 
 
 Give a formal proof for the Derived Controls rule. 
 

 

 Give a formal proof for the Says Simplification rule. 

 


	1. Introduction and Objectives
	2. Binary and Hexadecimal Number Systems
	2.1. Binary
	2.2. Binary to Decimal Conversion
	2.3. Hexadecimal
	2.4. Hexadecimal to Decimal
	2.5. Hexadecimal to Binary
	2.6. Windows Calculator
	2.7. Exercises

	3. Boolean Algebra: Truth Tables and Logic Operators
	4. Sets and Relations
	4.1. Definitions and Notation
	4.2. Examples and Exercises
	4.2.1. Example
	4.2.2. Exercises

	4.3. Approaches for Mathematical Proofs
	4.3.1. Properties
	4.3.2. Example Proof


	5. Syntax
	5.1. Principal Expressions
	5.2. Access Control Statements
	5.3. Well-Formed Formulas
	5.3.1. Backus-Naur Form (BNF)
	5.3.2. Examples

	5.4. Exercises

	6. Kripke Structures
	6.1. Definition
	6.2. Example
	6.3. Exercise

	7. Access Control Logic
	7.1. Logical Rules
	7.1.1. The Taut Rule
	7.1.2. The Modus Ponens Rule
	7.1.3. The Says Rule
	7.1.4. The MP Says Rule
	7.1.5. The Speaks For Rule
	7.1.6. The & Says Rule
	7.1.7. The Quoting Rule
	7.1.8. Properties of ⇒
	7.1.9. The Controls Definition

	7.2. Example Formal Proofs
	7.3. Useful Derived Rules
	7.4. Exercises
	7.4.1. Give a formal proof for the Derived Speaks For rule.
	7.4.2. Give a formal proof for the Derived Controls rule.
	7.4.3. Give a formal proof for the Says Simplification rule.



