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INTRODUCTION 

Military theorists across the millennium have identified the rate of effective decision-

making compared to an adversary’s as a cornerstone for success on the battlefield.1 In its most 

recent conflicts, the US has held tactical dominance because of its well-developed intelligence, 

surveillance, and reconnaissance (ISR) assets’ ability to accelerate the rate of good decisions by 

eliminating uncertainty in a battlespace. However, today’s battlespace with strategic competitors 

like the People’s Republic of China (PRC) is increasingly complex, and US ISR assets will have 

greater difficulty eliminating uncertainty. In the contested South China Sea, the PRC is 

complicating the battlespace with passive systems that can detect an incoming aircraft without 

the aircraft’s knowledge that it has been detected. When the PRC has accurate information while 

its adversary is uncertain, it allows the PRC to make more effective decisions faster. To strike 

targets and survive, US aircrew will have to adapt their decision-making for an uncertain 

environment. Therefore, the effectiveness of US warfighter’s decision-making in the Chinese 

passive detection battlespace requires accurate risk assessment by balancing the perceived 

probability of outcomes with the perceived gravity of consequence. Specifically, the US should 

educate warfighters to understand uncertainty aversion’s effect on probability estimation and loss 

aversion on perceived consequences to make timely, effective decisions.  

PASSIVE SYSTEMS 

This paper defines a passive detection system as able to receive electromagnetic energy 

but has no associated active transmitter. Thus, the system is not used directly for targeting but 

can pass data to a kinetic system that can target an aircraft. In simplest terms, a passive system 

looks or listens for an approaching adversary aircraft. Two examples of passive detection 
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systems utilized by the PRC are maritime E-Stations and multi-static radars using non-

cooperative transmitters.  

First, the PRC layers their maritime interests in the South China Sea with environmental 

research platforms to acquire incoming aircraft visually. E-Stations contain Electro-Optical (EO) 

equipment pointed skyward that can be used to detect stealth aircraft.2 Only limited by the 

fidelity of the equipment, EO sensors can detect any overflying aircraft within a clear line of 

sight. Moreover, these floating EO sensors are mobile and have a synergistic effect when spread 

out over vast distances to complicate the battlespace.  

 Second, the PRC complicates the battlespace by using radars that listen instead of 

transmitting. A multi-static radar with a non-cooperative transmitter uses several antennas to 

listen and triangulate received signals from an incoming aircraft to gather range and bearing data. 

Unlike a traditional radar with an active transmitter to send out signals, the non-cooperative 

transmitter can be any broadcast signal in the electromagnetic spectrum.3 These signals can be 

civilian television, FM/AM radio stations, or even High Frequency (HF) signals. Civilian signals 

are the active component of a passive system and reflect energy off an incoming aircraft to the 

receiver antennas. Some US assets have the advantage of being able to discern when they have 

been detected by traditional actively transmitting early warning (EW) radars. However, the pure 

volume of civilian frequencies an aircraft flies through makes monitoring all potential 

frequencies impossible, thus creating an asymmetry in information. The passive system knows 

the aircraft's location, but the aircraft does not know it has been detected.  The PRC values assets 

designed for asymmetric warfare. The most emphasized asset in the Chinese Navy is not the 

aircraft carrier but the submarine for its ability to move and strike with a cloak of uncertainty.4 
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Similarly, passive systems threaten aircraft asymmetrically as a force multiplier for 

kinetic systems and clouds an aircrew's perception of risk. An integrated air defense system 

incorporating both passive systems and a mobile kinetic weapon can detect an adversary aircraft 

from a distance then move its kinetic asset to a more advantageous position before the aircraft's 

arrival. Estimating an accurate order of battle (OB) and when a US aircraft should anticipate 

being detected is difficult when the PRC employs passive sensors. Passive detection 

simultaneously increases the clarity of the battlespace for the PRC while clouding the enemy's 

perception. An uncertain battlespace is concerning to a force because of the human element of 

risk assessment and payoff estimation. 

To explain uncertainty's impact on risk assessment in decision-making, it is essential to 

understand how risk is measured. Military risk is defined as "the estimated probability and 

consequence of the Joint Force's projected inability to achieve current or future military 

objectives (risk-to-mission) while providing and sustaining sufficient military resources (risk-to-

force)." 5 Interpreted mathematically.   

Risk = Probability of Losing (Consequence of Losing) 

Risk is an objective measure, whereas risk perception is subjective because of the human 

element in estimating both variables, probability, and consequence. 

Firstly, Humans are averse to uncertainty and are inclined to make incredibly risky decisions 

instead of uncertain decisions. Renowned economist and military analyst Daniel Ellsberg showed 

that people reliably prefer to choose a known risky option over an uncertain option.6 The 

following illustrates Ellsberg's Paradox by translating his experiment into a passive detection 

battlespace.  
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An aircraft has two potential routings to a target. The first has a high level of confidence 

in OB with an estimated 80% chance the aircraft will strike its target and survive. The second 

also has a high level of confidence in OB with an estimated 99.99% chance of striking its target 

and surviving but is through a sea lane that could contain passive sensors. If the aircraft is 

detected passively in the sea lane, the enemy will move a mobile SAM system next to the 

aircraft's target reducing the aircraft's survivability by 30%. In this scenario, there are no passive 

sensors, only an uncertain possibility. Therefore, route one is objectively 19.99% riskier than 

route two. Based on the Ellsberg Paradox, a commander will prefer the objectively riskier first 

option because of the uncertainty of the second. Based on the Ellsberg Paradox and the human 

tendency for uncertainty aversion, decision-makers will inaccurately quantify uncertainty as risk 

in their decision-making. In a decision tree of possible consequences, the square represents 

which direction to launch the aircraft, and the circle represents the uncertain events.7 A 

commander's decision tree could be perceived as follows, and just like Ellsberg's findings, they 

will prefer the riskier known quantity because of uncertainty aversion.  

 

 

Secondly, there is also a human element in estimating perceived consequences, and 

humans are inclined to overestimate loss. Therefore, decision-makers must weigh the uncertainty 

Figure 1: Example decision tree  
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with the perceived consequences of losing and winning to make sound decisions. In economics, 

this is known as weighing risk versus reward. Making decisions in uncertainty is not a novel 

concept. John von Neuman, known as the father of game theory, created the expected value 

theorem to measure the total average value of a gamble. The expected value of a consequence 

can be found by multiplying outcomes by the probability that they will occur and then summing 

all those values.8 Shown here:  

EV=∑P(Xi)×Xi 

Air Force decision-makers use models like expected value to decide when the perceived 

payoff is worth the perceived risk. A payoff being the value associated with the outcome of a 

game.9 This process ensures reward is greater than risk. A commander can quantify their 

perceived risk and conceptualize it in terms of reward. For example, a commander observes 

uncertain ISR data due to passive sensors in an area and perceives that a specific aircraft type’s 

loss rate will be 50% per day. The aircraft value is $100M and is assigned a target valued at 

$125M. Solely based on the expected value theorem and dollar values, a worst-case scenario can 

be modeled: 

EV = .5 (winning value ) + .5 (losing value) 

EV = .5 (125) + .5 (-100) 

EV = $12.5M  

This mission is expected to yield a net $12.5M advantage over the enemy. This data on 

perceived payoff can now aid that commander in deciding to launch.   

The critical issue is that the expected value theorem and mathematical modeling are 

incomplete, and there is still a human element of estimating consequences. Through 

experimental studies, humans will make irrational decisions when compared to the expected 

value theorem. The fundamental divergence from the expected value is the behavioral law of 
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diminishing marginal utility.10 In economics, “utility” refers to the total ability for a good or 

service to satisfy desire, whereas “value” typically relates to currency.11 When thirsty, a human 

appreciates the first glass of water more than the hundredth. John von Neumann expanded on his 

work by pioneering the expected utility theorem, which determines that humans deal in utility, 

not value.12 Expected utility theorem is the expected value theorem corrected for the human 

element of decision-making. Utility marginally diminishes, so it is most accurately represented 

by a square root function of total values involved in a mission’s consequence. A commander may 

have all the empirical data, but the aircrew executes the mission. 

For example, the same situation as above is played out but from the aircrew’s 

perspective. This assumes utility equals the square root of the previously established variable, 

value. Expected Utility Theorem shows that:  

EU=∑P(Ui)×Ui   Where U=√Total Value of consequences 

EU= probability of winning (utility of winning) + probability of losing (utility of losing) 

The aircrew starts with a $100M aircraft and has the potential to leave the engagement 

with $225M if they strike the target or a value of $0 if shot down.  

In this case the starting utility for the aircrew is: 
 U=√100 

U=10 
 

The utility of winning: 
 U=√225 

U=15 
The utility of losing: 

 U=√0 
U=0 

Therefore, the Expected Utility of the engagement is: 
EU= .5 (15) + .5(0) 

EU= 7.5 
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In this scenario, the aircrew's perceived utility of striking the target is less than the 

starting utility of 10. This illustrates that humans are predisposed to gain more utility from "not 

losing" than "winning." This strong human element known as loss aversion can cloud a decision-

maker's judgment when making split-second decisions.  

RECOMMENDATIONS 

The examples above display the human disposition to prefer known risk to uncertainty 

and that loss aversion can affect the evaluation of consequences. This paper seeks first to educate 

warfighters to understand uncertainty aversion’s effect on probability estimation and second, loss 

aversion on perceived consequences to make timely, effective decisions. 

First, understanding consequences require cardinality. There is a well-founded process 

for quantifying the probability variable of the risk equation known as Acceptable Level of Risk 

(ALR). ALR defines the maximum allowable aircraft loss rate per day to maintain combat 

operations in an area of responsibility. Aircrew are expected to employ tactics that probability 

loss is at or below the acceptable loss rate. This method identifies the probability of risk for each 

aircraft in an uncertain environment. However, the second variable, the consequence of success, 

Figure 2: Expected utility   
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is incomplete at the tactical level. Based on the US targeting process, strategic and operational 

level decision-makers have more clarity between target priority and the associated impact on the 

overall war effort.13 The payoffs for a target are clear. The Combat Plans Division (CPD) of an 

Air Operations Center (AOC) will assess the payoff of striking a target, rank it by assigning a 

priority based on the commander’s intent, and then publish the Joint Prioritized Target List 

(JPTL). This process has an element of decision-making capacity that is lost when passed down 

to the tactical level. In game theory, payoffs are divided into two categories, “Ordinal” and 

“Cardinal.” Ordinal refers to a ranking of preferred outcomes, whereas cardinal refers to the 

intensity in which those outcomes are preferred.14 The JPTL is a prime example of ordinal 

payoffs, but it is essential for games involving uncertainty to have cardinal payoffs. Based on the 

doctrine of centralized command and decentralized execution, the mission commander and 

aircrew executing the mission require an understanding of the intensity in which a target is 

preferred to maximize outcome.15 The AFTTP3-3.IPE on Integrated Planning and Execution 

address consequence versus risk when describing ALR, but it is incomplete.16

 Figure 3: Risk heat map, relationship between probability and consequence to determine ALR 
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The critical omission to this graph of probability versus consequence is that the vertical 

axis of this graph is useless to a mission commander if there is no cardinal measurement of target 

gravity. Uncertainty and perceived risk are dynamic. The aircrew will have the most up-to-date 

probability evidence, but they require a cardinal measurement of payoff to maximize 

consequence in an uncertain battlespace. Increasing aircrews' understanding of a target's cardinal 

impact will allow the aircrew to maximize payoffs as probabilities change. 

Second, the Air Force must then educate decision-makers about loss aversion. As shown 

in the example above, humans are predisposed to prefer "not losing" to winning. Unfortunately, 

the current ALR guidance is incomplete in that it is entirely loss-focused without addressing loss 

aversion.17 

 

 
Figure 4: Example ALR breakout for an air operations directive (AOD)  
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Loss aversion has its most pronounced effects when it is unrecognized. It is essential for 

aircrew to evaluate probability and consequence continuously in terms of payoffs. This cannot be 

encapsulated with any mathematical solution, so they will “need to leverage some degree of 

intuitive flair or instinct to evaluate risks and respond appropriately.”18 The feel for decision-

making is developed primarily academically and then concretely through experience. In the 

absence of experience, a decision maker’s only preparation for the battlespace is written 

guidance and training. 

CONCLUSION 

The rate of effective decision-making by the US warfighter will define US relevance in 

strategic competition. Passive systems create uncertainty in a battlespace that ISR cannot 

completely illuminate, and there is a human element to both the probability and consequence 

variables of military risk. In a force of centralized command and decentralized execution, the 

aircrew will have the most current evidence of a battlespace. Therefore, the aircrew should be 

trained to measure success in cardinal terms to balance loss aversion and be cognizant of 

uncertainty aversion to avoid overestimating risk. These two thought processes will aid decision-

makers to balance risk versus reward to make effective, timely decisions in the battlespace to 

strike targets and survive. 
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